Scientists discover how breast cancer cells spread from blood vessels

February 09, 2016

Researchers have identified a protein that controls how breast cancer cells spread around the body, according to a Cancer Research UK-funded study published in Science Signaling* today (Tuesday).

This study sheds light on how cancer cells leave the blood vessels to travel to a new part of the body, using a technique that allows researchers to map how cancer cells interact and exchange information with cells that make up the blood vessels.

When tumour cells spread, they first enter the blood stream and grip onto the inner walls of blood vessels. The researchers found that the cancer cells control a receptor protein called EPHA2 in order to push their way out of the vessels.

When cancer cells interact with the walls of the blood vessels, EPHA2 is activated and the tumour cells remain inside the blood vessels. When the EPHA2 is inactive, the tumour cells can push out and spread.

Dr Claus Jorgensen, who led the research at The Institute of Cancer Research, London, and at Cancer Research UK's Manchester Institute at the University of Manchester, said: "The next step is to figure out how to keep this receptor switched on, so that the tumour cells can't leave the blood vessels - stopping breast cancer spreading and making the disease easier to treat successfully."

Nell Barrie, Cancer Research UK's senior science information manager, said: "This is important research that teaches us more about how breast cancer cells move. Research like this is vital to help our understanding of how cancer spreads, and how to stop this from happening. More research is needed before this will benefit patients but it's a jump in the right direction."
-end-


Cancer Research UK

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.