RIT researcher gets NIST award to develop security measures for deeply-embedded systems

February 09, 2017

Mehran Mozaffari Kermani, a faculty member at Rochester Institute of Technology, recently received a grant to design security measures for computing systems that will protect wearable and implanted medical devices such as pacemakers from cyberattacks. It is work that could improve both patient safety and data integrity of deeply-embedded systems.

Mozaffari Kermani, an assistant professor of electrical engineering in RIT's Kate Gleason College of Engineering, received $343,406 in funding from the National Institute of Standards and Technology--Measurement Science & Engineering Research Grant Program. He will develop cryptographic systems and technology that will further secure deeply-embedded computing systems--organizational networks connected to the internet.

"It is important to secure deeply-embedded systems. If you think of credit cards or cell phones, there have been security studies about these applications for years. If lost, this could be mostly financial loss," he said. "But if we talk about security with medical devices, it could be life threatening. Instead of dollars, we could lose lives."

Today, pacemakers, implantable cardiac defibrillators and insulin pumps, for example, are representative of wireless devices with deeply-embedded computing systems. Devices capture patient data then transmit that information via the internet to medical personnel. Yet data can also be intercepted unless secured, and access to the implantable device's system can also compromise its functionality for a patient.

Security integration poses challenges to design and processing power. Current system security algorithms need to be integrated into highly sensitive environments, in small spaces and also have varying energy requirements to ensure optimal use. Researchers are looking for solutions to balance needed computing power with device longevity and security.

Mozaffari Kermani's research, "Design for fault attack resiliency of lightweight cryptographic architectures for deeply-embedded systems," ensures that security countermeasures for network attacks are more fully integrated into the overall design process of deeply-embedded systems. His approach is to include security as part of the original design process by developing a countermeasure for an analysis attack--described as a type of implementation attack in which the attacker injects intentional faults into the implementation of the cryptographical algorithms.

"The security aspects of these deeply-embedded systems are different than legacy embedded systems, such as smart cards or sensor networks. The usage models and applications we have for these deeply embedded systems are very sensitive. They deal with human health and the ability to diagnosis different diseases, for instance. If there is a security breach in those applications, this could be life-threatening," he said.

Mozaffari Kermani is collaborating with researchers at Florida Atlantic University on this project and a related initiative in the area of post-quantum cryptography.
-end-


Rochester Institute of Technology

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.