Nav: Home

Water-soluble warped nanographene

February 09, 2018

Graphene and its nano-sized little sibling, nanographene, are well known for their remarkable photoelectronic properties. However, biomedical applications are hampered by the insolubility of the materials, especially in water. A Japanese team of scientists has now introduced substituted "warped nanographene," which is soluble in a broad range of solvents while maintaining its photophysical properties. In their publication in Angewandte Chemie, the authors also emphasize its photodynamic potential to selectively kill cells upon irradiation.

Nanographene has the hexagonal carbon lattice of graphene but consists of only a few carbon rings with tunable electronic properties. One of its big issues hampering widespread application in optoelectronic devices or biomedicine is its insolubility. Therefore, to suppress stacking and aggregation, a new type of nanographene with a bended structure has been synthesized, the so-called warped nanographene. Kenichiro Itami at Nagoya University, Japan, and his colleagues have now found a way to furnish the warped nanographene even further to obtain a fully soluble, amphiphilic product. The new structure was biocompatible, but upon irradiation it killed its host cell. This effective photosensitization behavior could inspire future research in photodynamic cancer therapy, the authors believe.

The poor solubility of graphene-like materials has been regarded problematic since the discovery of graphene as an intriguing one-layer carbon modification in 2004. To improve solubility, Itami and his colleagues have developed warped nanographene molecules with chemical substituents at the outer rim of the aromatic structure. The substituents were introduced by the relatively simple and powerful strategy of borylation. Once the molecule is borylated, the boron substituent can be replaced by other substituents, in this case, by an aromatic molecule bearing highly soluble tetra(ethylene glycol) chains (TEG). Applying this substitution-replacement strategy twice, the scientists accomplished the synthesis of a warped, i.e., bended, nanographene molecule that was stable in a broad range of solvents including water. Excited with a laser, it exhibited green fluorescence.

This fluorescence points to applications in biology, for example, as a dye in bioimaging. A further application came rather unexpected, the scientists reported. Upon excitation, the molecule, which was otherwise not harmful to the cells, killed the cell population of the human HeLa cell line to almost 100 percent. The authors proposed: "Although the mechanism is unclear, the relatively high efficiency of the singlet oxygen generation of [the soluble warped nanographene] may contribute to its HeLa cell death." Thus, a mechanism similar to dye sensitization and production of reactive oxygen species can be assumed.

These second-generation nanographenes combine the remarkable optoelectronic properties of graphene with biocompatibility. They may well play a future role in bioimaging, photodynamic therapy, and similar applications.
About the Author

Dr. Kinchiro Itami is a professor at the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University and head of the JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya, Japan. The main emphasis of his research is on the development of new synthetic methods, strategies, and concepts to solve challenging synthetic problems for realizing ideal chemical synthesis and for generating as-yet unexplored molecules of significant interest.


Related Graphene Articles:

Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...