Nav: Home

Your gadget's next power supply? Your body

February 09, 2018

BUFFALO, N.Y. -- Searching for a power outlet may soon become a thing of the past.

Instead, devices will receive electricity from a small metallic tab that, when attached to the body, is capable of generating electricity from bending a finger and other simple movements.

That's the idea behind a collaborative research project led by University at Buffalo and Institute of Semiconductors (IoP) at Chinese Academy of Science (CAS). The tab -- a triboelectric nanogenerator -- is described in a study published online Jan. 31 in the journal Nano Energy.

"No one likes being tethered to a power outlet or lugging around a portable charger. The human body is an abundant source of energy. We thought: 'Why not harness it to produce our own power?'" says lead author Qiaoqiang Gan, PhD, associate professor of electrical engineering in UB's School of Engineering and Applied Sciences.

Triboelectric charging occurs when certain materials become electrically charged after coming into contact with a different material. Most everyday static electricity is triboelectric.

Researchers have proposed numerous nanogenerators that utilize the triboelectric effect; however, most are difficult to manufacture (requiring complex lithography) or are not cost effective. The tab that the UB and CAS team are developing addresses both of those concerns.

It consists of two thin layers of gold, with polydimethylsiloxane (also called PDMS, a silicon-based polymer used in contact lenses, Silly Putty and other products) sandwiched in between.

Key to the device is that one layer of gold is stretched, causing it to crumple upon release and create what looks like a miniature mountain range. When that force is reapplied, for example from a finger bending, the motion leads to friction between the gold layers and PDMS.

"This causes electrons to flow back and forth between the gold layers. The more friction, the greater the amount of power is produced," says another lead author, Yun Xu, PhD, professor of IoP at CAS.

The study describes a small tab (1.5 centimeters long, by 1 centimeter wide). It delivered a maximum voltage of 124 volts, a maximum current of 10 microamps and a maximum power density of 0.22 millwatts per square centimeter. That's not enough to quickly charge a smartphone; however it lit 48 red LED lights simultaneously.

Co-authors of the study include Huamin Chen at IoP and CAS; and Nan Zhang, a PhD student at UB.

Because the tab is easily fabricated, Zhang is leading a team of UB undergraduates which is tasked with improving the tab's performance. The team plans to use larger pieces of gold, which when stretched and folded together are expected to deliver even more electricity.

Researchers are also working on developing a portable battery to store energy produced by the tab. They envision the system serving as a power source for various wearable and self-powered electronic devices.
-end-
The research is supported by the U.S. National Science Foundation, the National Basic Research Program of China, National Natural Science Foundation of China, Beijing Science and Technology Projects, Key Research Projects of the Frontier Science of the Chinese Academy of Sciences and National Key Research and Development Plan.

University at Buffalo

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".