High greenhouse gas emissions from Siberian Inland Waters

February 09, 2021

Rivers and lakes at high latitudes are considered to be major sources for greenhouse gas emissions to the atmosphere, but these losses are poorly constrained. In a study published in Nature Communications, Umeå University researchers and collaborators quantify carbon emissions from rivers and lakes across Western Siberia, finding that emission are high and exceed carbon export to the Arctic Ocean.

High latitude regions play a key role in the global carbon cycle and climate system. An important question is the degree of mobilization and atmospheric release of vast soil carbon stocks, partly stored in permafrost, with amplified warming of these regions. A fraction of this carbon is exported to inland waters and emitted to the atmosphere, yet these losses are poorly constrained and seldom accounted for in assessments of high latitude carbon balances. This is particularly relevant for Western Siberia, with its extensive peatland carbon stocks that are expected to be affected by climate warming.

Now researchers at the Climate Impacts Research Centre (CIRC), Umeå University, and collaborators from Russia and France have quantified the carbon emission from inland waters of Western Siberia. Due to the remoteness and large area (3.6 million km2 area) of the study region, sampling of lakes and rivers were carried out over several years.

"We collected data of representative lakes and rivers over 2,000 km distance, including the main channel of Arctic's largest watershed the Ob' River", explains lead author Jan Karlsson.

Based on these data and information on the distribution of inland waters of the region the research team show high carbon emission from Western Siberian inland waters and that these systems play an important role in the continental carbon cycle.

"Our results emphasize the important role of carbon emissions from inland waters in the regional carbon cycle. The carbon emission from the inland waters was almost an order of magnitude higher that carbon export to the Arctic Ocean and reached nearly half of the region's land carbon uptake."

The high significance of inland waters in the carbon cycle of Western Siberia is likely a result of the overall flat terrain, which lead to relatively high water coverage and long water transit times, and thus favorable conditions for decomposition and outgassing of land derived carbon in inland waters. The authors stress that further studies on the coupled land-water carbon cycle are needed in order to improve the understanding of regional differences in the contemporary carbon cycle and predictions of future conditions in these understudied and climate-sensitive areas.

"Ignoring carbon outgassing from inland waters will likely largely underestimate the impact of warming on these regions and overlook their weakening capacity to act as terrestrial carbon sinks."
-end-
Original article
Karlsson, J., S. Serikova, S. N. Vorobyev, G. Rocher-Ros, B. Denfeld, O. S. Pokrovsky. 2021. Carbon emission from Western Siberian inland waters. Nature communications, DOI: 10.1038/s41467-021-21054-1

About the Climate Impacts Research Centre, CIRC:

CIRC conduct and facilitate research on the effects of climate change on Arctic and other northern ecosystems. The research range from detailed process-level studies to comprehensive landscape-level studies in both aquatic and terrestrial systems. The activity is located at Abisko Scientific Research Station in northern Sweden.
https://www.arcticcirc.net/

Press photos:

https://mediabank-umu.qbank-mediaportal.se/selection/69d7d9e3b145f034f98af84d9f6cafb4

Example of inland waters studied in western Siberia.
Photo: Egor Istigechev

PhD students Ivan Krickov and Svetlana Serikova prepare sampling equipent for sampling lakes and rivers in Western Siberia.
Photo: Svetlana Serikova

For more information, please contact:
Jan Karlsson,
professor, Climate Impacts Research Centre (CIRC),
Department of Ecology and Environmental Sciences, Umeå University, Sweden
Phone: +46(0)90-786 60 02
Email: jan.p.karlsson@umu.se

?

Umea University

Related Greenhouse Gas Emissions Articles from Brightsurf:

Using materials efficiently can substantially cut greenhouse gas emissions
Emissions from the production of materials like metals, minerals, woods and plastics more than doubled in 1995 - 2015, accounting for almost one-quarter of all greenhouse gas (GHG) emissions worldwide.

Climate change: Ending greenhouse gas emissions may not stop global warming
Even if human-induced greenhouse gas emissions can be reduced to zero, global temperatures may continue to rise for centuries afterwards, according to a simulation of the global climate between 1850 and 2500 published in Scientific Reports.

Climate-friendly Cooling Could Cut Years of Greenhouse Gas Emissions and Save US$ Trillions: UN
Energy-efficient cooling with climate-friendly refrigerants could avoid up to 460 billion tonnes of greenhouse gas equivalent being added to the atmosphere through 2060 - roughly equal to eight years of global emissions at 2018 levels.

Forests can be risky climate investments to offset greenhouse gas emissions
Given the tremendous ability of forests to absorb carbon dioxide from the atmosphere, some governments are counting on planted forests as offsets for greenhouse gas emissions -- a sort of climate investment.

Switching from general to regional anaesthesia may cut greenhouse gas emissions
Switching from general to regional anaesthesia may help cut greenhouse emissions and ultimately help reduce global warming, indicates a real life example at one US hospital over the course of a year, and reported in the journal Regional Anesthesia & Pain Medicine.

Women generate lower travel-related greenhouse gas emissions, NZ study finds
Women use more diverse modes of travel and generate lower greenhouse gas emissions than men, despite men being more than twice as likely to travel by bike, a New Zealand study has found.

Great potential in regulating plant greenhouse gas emissions
New discoveries on the regulation of plant emissions of isoprenoids can help in fighting climate change - and can become key to the production of valuable green chemicals.

Cable bacteria can drastically reduce greenhouse gas emissions from rice cultivation
The rice fields account for five percent of global emissions of the greenhouse gas methane, which is 25 times stronger than CO2.

Sugar ants' preference for pee may reduce greenhouse gas emissions
An unlikely penchant for pee is putting a common sugar ant on the map, as new research from the University of South Australia shows their taste for urine could play a role in reducing greenhouse gases.

Seeking better guidelines for inventorying greenhouse gas emissions
Governments around the world are striving to hit reduction targets using Intergovernmental Panel on Climate Change (IPCC) guidelines to limit global warming.

Read More: Greenhouse Gas Emissions News and Greenhouse Gas Emissions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.