From trash to treasure: Silicon waste finds new use in Li-ion batteries

February 09, 2021

Li-ion batteries (LIBs) are widely used in various mobile electronics. Concerns of global warming and climate change have recently boosted the demand for LIBs in electric vehicles and solar photovoltaic output smoothing. Si has been studied as an active material with a high theoretical capacity of 3578 mAh/g, which is around ten times higher than that of graphite (372 mAh/g).

Now, a team of researchers at Osaka University has used flake-shaped Si nanopowder wrapped by ultrathin graphite sheets (GSs) to fabricate LIB electrodes with high areal capacity and current density.

Generally treated as industrial waste, Si swarf is generated at a rate of 100,000 tons per year globally from Si ingots that are produced from silica through processes at 1000~1800°C. Water-based coolants and fixed abrasive grain wire saws are paving the way to the use of Si swarf as an anode active material with a high capacity at a reduced cost.

Nano carbon materials have been applied to Si electrodes to improve electrical conductivity and cyclability. Many strategies for dealing with large volume change of Si electrodes at relatively high costs have been demonstrated. However, the Si electrodes do not combine all the requirements for high electrode performance, namely reduced cost, environmental friendliness of materials and processes, and circular economy.

"In this study, Si/graphite sheet composites from Si swarf and expanded graphite are used as the active material with reduced cost and thermal budget (Fig. 1). Si nanopowder is dispersed and wrapped between GSs fabricated from expanded graphite (Fig. 2)," explains first author Jaeyoung Choi. "GS bridges are formed across cracks and suppress cracking and peeling-off of Si. Agglomerated GSs wrap Si/GS composites, and work as stable frameworks that secure electrolyte paths and buffer spaces for Si volume change."

The Si/GS composite structure and the delithiation limitation improve the cyclability up to 901 cycles at 1200 mAh/g. The areal delithiation capacity and current density of the Si/GS electrodes linearly increase to 4 mAh/cm2 and 5 mA/cm2, respectively, with the mass loading for more than 75 cycles (Fig. 3), while thick electrodes with C-coated Si fabricated in C2H4 are not competitive.

"Si anode batteries with high capacity and high current density have the potential to be used in electric vehicles. This potential, combined with increasing generation of Si swarf as industrial waste, will allow our work to contribute to reduced greenhouse gas emissions and the achievement of SDGs," says corresponding author Taketoshi Matsumoto.
The article, "Si swarf wrapped by graphite sheets for Li-ion battery electrodes with improved overvoltage and cyclability," was published in Journal of The Electrochemical Society at DOI:

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.


Osaka University

Related Electric Vehicles Articles from Brightsurf:

Drop in pandemic CO2 emissions previews world of electric vehicles
When the SF Bay Area mandated shelter-in-place March 16, it created a natural experiment for UC Berkeley's Ron Cohen, who had established an inexpensive pollution sensor network in local neighborhoods.

Plugging in: Survey examines American perceptions of -- and resistance to -- electric vehicles
The latest installment of the Climate Insights 2020 report series finds that resistance to purchasing electric vehicles derives from a variety of sources -- and those reasons differ among some demographics.

New study shows converting to electric vehicles alone won't meet climate targets
Today there are more than 7 million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago.

New composite material revs up pursuit of advanced electric vehicles
Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

Unmanned aerial vehicles help wheat breeders
Usually, breeders pick the best wheat lines by hand, but unmanned aerial vehicles that record certain measures of plant health can help breeders select wheat lines more efficiently.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Will automated vehicles cut parking revenue?
Benjamin Clark and Anne Brown of the University of Oregon used Seattle as a case study to find the association between TNC trips and on-street parking occupancy.

Influx of electric vehicles accelerates need for grid planning
A new PNNL report says the western US bulk power system can reliably support projected growth of up to 24 million electric vehicles through 2028, but challenges will arise as EV adoption grows beyond that threshold.

Battery breakthrough gives boost to electric flight and long-range electric cars
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have developed a new battery material that could enable long-range electric vehicles that can drive for hundreds of miles on a single charge, and electric planes called eVTOLs for fast, environmentally friendly commutes.

Research determines financial benefit from driving electric vehicles
Motorists can save as much as $14,500 on fuel costs over 15 years by driving an electric vehicle instead of a similar one fueled by gasoline, according to a new analysis conducted by researchers at the U.S.

Read More: Electric Vehicles News and Electric Vehicles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to