How cells recycle the machinery that drives their motility?

February 09, 2021

Research groups at University of Helsinki and Institut Jacques Monod, Paris, discovered a new molecular mechanism that promotes cell migration. The discovery sheds light on the mechanisms that drive uncontrolled movement of cancer cells, and also revises the 'text book view' of cell migration.

The ability of cells to move within our bodies is critical in wound healing, as well as for immune cells to patrol in our tissues to hunt bacterial and viral pathogens. On the flip-side, uncontrolled movement of cells is a hallmark of cancer invasion and metastasis.

The machinery that drives cell migration is a complex network of dynamic filaments composed of a protein actin. Actin exists in monomeric form, but like Lego bricks, different types of filamentous structures can be built from actin monomers in cells. Actin filaments are organized in cells in a way that their rapidly elongating plus-ends face the plasma membrane, whereas their minus-ends are oriented away from the plasma membrane. Elongation of actin filaments at their plus-ends against the plasma membrane generates the force to push the leading edge of cell forward during cell migration. To maintain a sufficient supply of monomeric actin subunits for filament elongation, actin filaments must be rapidly disassembled in cells, and this is believed to occur at their minus-ends. An important factor that limits actin filament disassembly to their minus-ends is Capping Protein, which binds very tightly to filament plus-ends to block filament elongation and shortening (see related figure).

A new study published in Nature Cell Biology reveals that this 'text book view' of cell migration needs to be revised. The research, led by Academy Professor Pekka Lappalainen from HiLIFE Institute of Biotechnology, University of Helsinki, revealed that a conserved actin-binding protein, Twinfilin, efficiently removes Capping Protein from the filament plus-ends ends. This leads to filament depolymerization also from their 'aged' plus-ends, which no longer push the leading edge of cell forward. In the absence of Twinfilin, actin filament recycling is diminished, filaments push the cell edge forward less efficiently, and cell migration is slower.

"Our results suggest that Twinfilin and Capping Protein make together a 'molecular clock', which ensures that the 'productive' actin filaments pushing the plasma membrane have a sufficient supply of actin monomers, whereas the 'aged' actin filaments that no longer push the plasma membrane are disassembled," says Lappalainen.

"This study highlights the need of several proteins with different functions to act in synergistic manner to maintain the normal morphology and functions of actin networks in cells," continues Dr. Markku Hakala who is the main author of this study.

Despite extensive studies, the precise mechanisms by which actin monomers are recycled in cells has remained elusive. The new study adds an important piece in this puzzle by reveling how Capping Protein is removed from actin filament plus-ends to enable their rapid disassembly. These findings also create a basis for further studies to understand how irregularities in actin disassembly machinery cause severe diseases and developmental disorders.

"Uncontrolled expression of Twinfilin is linked to many diseases, such as breast cancer invasion and lymphoma progression. Our work, therefore, also sheds light on the molecular mechanisms that drive uncontrolled movement of cancer cells," concludes Lappalainen.

University of Helsinki

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to