Biomaterials could mean better vaccines, virus-fighting surfaces

February 09, 2021

WASHINGTON, February 9, 2021 -- Advances in the fields of biomaterials and nanotechnology could lead to big breakthroughs in the fight against dangerous viruses like the novel coronavirus that causes COVID-19.

In APL Bioengineering, by AIP Publishing, researchers from the Indian Institute of Science describe two possibilities being explored by scientists in the field to make vaccines more effective and build surfaces that could fight and kill viruses on their own.

"It is important not just in terms of COVID," said author Kaushik Chatterjee. "We've seen SARS, and MERS, and Ebola, and a lot of other viral infections that have come and gone. COVID has, of course, taken a different turn altogether. Here, we wanted to see how biomaterials could be useful."

Biomaterials are materials engineered to interact with other biological systems in some way. Examples include joint replacements, dental implants, surgical mesh, and drug delivery systems.

Nanotechnology, meanwhile, focuses on building tiny structures and devices at the microscopic level. It has been used in the medical field to target specific cells or tissues.

It is the combination of the two that could lead to more effective vaccines against viruses. While some current vaccines are already effective, the authors said biomaterials-based nanoparticles could one day be used to make them even stronger.

"It is a means of stimulating the immune cells which produce antibodies during the vaccination," said author Sushma Kumari. "It is like a helper, like priming the cells. Now, the moment they see the protein, the cells are more responsive to it and would be secreting more antibodies."

At the same time, researchers are studying ways the technology could be used to curb the spread of viruses in the world around us. Currently, the techniques used to disinfect surfaces in public places, from conventional cleaning to aerosols to ultraviolet light, can require lots of time and effort.

Emerging bioengineering technologies would create antiviral surfaces that could disinfect themselves.

"As viruses end up as droplets on various surfaces, the next person touching that could be picking up the disease," Chatterjee said.

By putting a natural charge on the surface or designing it at the nano-level in an unfriendly pattern for the virus, masks, PPE suits, hospital beds, doorknobs, and other items could be created that automatically damage or destroy a virus.

The authors note this research is in its infancy. Much work remains to be done to learn which of many biomaterials may be most effective at fighting viruses, and an answer for one disease likely will not be the same for others.

"Hopefully, this review and this kind of discussion will get researchers to think about how to use the knowledge that's out there," said Chatterjee.
-end-
The article "Biomaterials-based formulations and surfaces to combat viral infectious diseases" is authored by Kaushik Chatterjee and Sushma Kumari. The article will appear in APL Bioengineering on Feb. 9, 2021 (DOI: 10.1063/5.0029486). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0029486.

ABOUT THE JOURNAL

APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

American Institute of Physics

Related Nanotechnology Articles from Brightsurf:

Hiring antibodies as nanotechnology builders
Researchers at the University of Rome Tor Vergata recruit antibodies as molecular builders to assemble nanoscale structures made of synthetic DNA.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Want in on nanotechnology? Capitalize on collaborative environments
Patent law experts demonstrate that private-public partnerships lead to promising innovation output measured in patents.

Nanotechnology makes it possible for mice to see in infrared
Mice with vision enhanced by nanotechnology were able to see infrared light as well as visible light, reports a study published Feb.

Healing kidneys with nanotechnology
In new research appearing in the journal Nature Biomedical Engineering, Hao Yan and his colleagues at the University of Wisconsin-Madison and in China describe a new method for treating and preventing Acute Kidney Injury.

A treasure trove for nanotechnology experts
A team from EPFL and NCCR Marvel has identified more than 1,000 materials with a particularly interesting 2-D structure.

Nanotechnology could redefine oral surgery
A trip to the dentist or orthodontist usually instills a sense of dread in most patients, and that's before the exam even begins.

MEDLINE indexes Pharmaceutical Nanotechnology
Pharmaceutical Nanotechnology, an important journal published by Benthm Science, is accepted to be included in MEDLINE.

Nanotechnology and nanopore sequencing
DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop.

Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.

Read More: Nanotechnology News and Nanotechnology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.