AD diagnostics could become more accessible

February 09, 2021

A team of researchers from the Laboratory of Biophysics at NUST MISIS, Lomonosov Moscow State University and D. Mendeleev University of Chemical Technology of Russia has summarized metal-containing diagnostic agents for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease (AD). According to the researchers, metal-containing radiopharmaceuticals are not only highly effective for detecting early markers of Alzheimer's disease, but also synchrotron-independent and long-lived. Thus, their use could improve access to diagnostic imaging of AD among the risk groups. The review was published in the International Journal of Molecular Sciences.

Alzheimer's disease is the most common form of dementia. It is a progressive neurological disease that leads to a decline in memory and other cognitive abilities. AD is associated with the deposition of so-called amyloid protein plaques in the brain that disrupt communication among neurons, resulting in loss of function and cell death. Amyloid plaques are a hallmark of AD, occurring 7-15 years before the onset of cognitive symptoms of the pathology. They allow doctors to diagnose Alzheimer's earlier -- even before any symptoms appear.

Timely diagnostic imaging plays an important role in managing AD. Identifying it at an early stage and initiating therapy can delay the progression of the disease. Amyloid deposits in the brain can be PET-traced using special radioactive markers that bind to different amyloids. However, using these drugs requires an expensive laborious synthesis with confirmation of radio purity at each stage. The short half-lives of the currently used radionuclides carbon-11 (11C) and fluorodeoxyglucose (18F) -- 20 and 109 minutes respectively -- may also limit the widespread use of these imaging agents, since they can only be transported a short distance before use and have to be used immediately upon arrival.

The solution could lie in metal-containing diagnostical agents. Copper, zinc and iron cations have been proven to bind to amyloids, highlighting amyloid plaques, which raises the possibility of designing copper-, zinc and iron-based metal complexes for the diagnosis and theranostics of AD. AD diagnostic agents radiolabeled with the copper isotope 64Cu are attractive not only due to the simple and fast introduction of radionuclide at the last stage of non-radioactive synthesis, but also due to its 12-hour half-life, perfect for PET imaging.

Another promising PET radionuclide is gallium-68 (68Ga). Its parent nuclide, 68Ge, has a half-life of 271 days, and the existing generators can provide sufficient quantities of 68Ga for up to one year, resulting in a relatively inexpensive and reliable source of a positron-emitting radionuclide. In addition to PET imaging of amyloids, metal-containing agents could be used for AD visualization by the means of single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI).

However, the development of AD imaging agents is restricted by the presence of the blood-brain barrier (BBB) which limits the substance from reaching the cerebral target. The BBB is a highly selective mechanism that controls the passage of substances from the blood into the cerebrospinal fluid and thus into the brain, and serves as the clearance path for waste metabolites of the brain. Thus, the BBB makes it difficult to develop new treatments of brain diseases, or new radiopharmaceuticals for neuroimaging of the brain.

A few metal-based agents have demonstrated the ability to cross the BBB and bind with amyloid in the brain: 64Cu, 68Ga and 99mTc (technetium-99 m). These isotopes are significantly easier to produce than 11C and 11F, with a longer life-span. Among the variety of compounds considered in the review, the most promising results were shown by copper-based coordination compounds for PET imaging, gallium-based coordination compounds for MRI, and technetium -based coordination compounds for SPECT imaging.

National University of Science and Technology MISIS

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to