Starling success traced to rapid adaptation

February 09, 2021

Ithaca, NY--Love them or hate them, there's no doubt the European Starling is a wildly successful bird. A new study from the Cornell Lab of Ornithology examines this non-native species from the inside out. What exactly happened at the genetic level as the starling population exploded from just 80 birds released in New York City's Central Park in 1890, peaking at an estimated 200 million breeding adults spread all across North America? The study appears in the journal Molecular Ecology.

"The amazing thing about the evolutionary changes among starling populations since they were introduced in North America is that the changes happened in a span of just 130 years in parallel with a huge expansion in the bird's range and population size," says lead author Natalie Hofmeister, a doctoral candidate at the Cornell Lab. "For a long time we didn't think that was possible--that it took millions of years for genetic mutations to change a genome."

The genetic differences found among North American starlings are very subtle. In fact, after researchers sequenced the genomes of birds from widely distributed locations around the United States, the genomes were all remarkably alike--any starling could undoubtedly mate successfully with another, no matter where they're originally from. But the researchers did find the genetic signatures of change in areas of the genome that control how starlings adapt to variations in temperature and rainfall. Study authors concluded the birds had undergone "rapid local adaptation," adjusting to conditions not found in their native European range.

Another key factor is movement. The study points out that there's a lot of movement among starlings. All that movement means starlings kept establishing new populations as they spread westward, and each population had to adapt to new environments. The adaptation may not have resulted from a new mutation but from an existing genetic variation in the founding population.

"A genetic variation that might not have been useful in one environment could turn out to be very beneficial in another," Hofmeister explains. "So, a variation related to temperature and rainfall that enhanced survival became more common in a new environment." The massive size of the total starling population across North America meant these gene variants could be passed along across the generations.

European Starlings in North America are unusual in another way. Species with a highly restricted gene pool--a genetic bottleneck--are more likely to become extinct because of fertility issues associated with in-breeding, a problem that endangered animals also face. The introduction of just 80 birds in Central Park (released in an attempt to introduce all the birds mentioned in Shakespeare's plays to North America) was one of many attempted introductions in other parts of the country. It's possible the resulting gene flow among these populations prevented the species from dying out. It's an area of speculation ripe for further study.

"What I think is really cool is that the starlings in North America appear to have adapted to different conditions across the range," Hofmeister says. "So, it wasn't just that they reproduced really quickly, and then just kept reproducing. It's that they specialized once they arrived in new areas."

Despite their success and large numbers, the European Starling is now in steep decline, like so many other species in North America. The current population is half the size it was 50 years ago--down from an estimated 166.2 million breeding birds in 1970 to 85.1 million (Rosenberg et. al. Science 2019) . The species is also declining in Europe.

Though starlings are reviled for some of their less admirable habits and their impact on native species, Hofmeister says they're fascinating birds and really quite beautiful. And they're allowing scientists to follow one of the many threads that influence avian evolution.

Natalie R. Hofmeister, Scott J. Werner, Irby J. Lovette (2021) Environmental correlates of genetic variation in the invasive European starling in North America. Molecular Ecology.

Cornell University

Related Genetic Variation Articles from Brightsurf:

How genetic variation gives rise to differences in mathematical ability
DNA variation in a gene called ROBO1 is associated with early anatomical differences in a brain region that plays a key role in quantity representation, potentially explaining how genetic variability might shape mathematical performance in children, according to a study published October 22nd in the open-access journal PLOS Biology by Michael Skeide of the Max Planck Institute for Human Cognitive and Brain Sciences, and colleagues.

Genetic variation unlikely to influence COVID-19 morbidity and mortality
A comprehensive search of genetic variation databases has revealed no significant differences across populations and ethnic groups in seven genes associated with viral entry of SARS-CoV-2.

Researchers find pronghorn exhibit little genetic variation despite landscape obstacles
While previous research shows landscape features such as major highways restrict the daily and seasonal movements of pronghorn and increase mortality risk, this study found little, if any, evidence that these barriers affect genetic connectivity among Wyoming pronghorn.

gnomAD Consortium releases its first major studies of human genetic variation
For the last eight years, the Genome Aggregation Database (gnomAD) Consortium (and its predecessor, the Exome Aggregation Consortium, or ExAC), has been working with geneticists around the world to compile and study more than 125,000 exomes and 15,000 whole genomes from populations around the world.

Individual genetic variation in immune system may affect severity of COVID-19
Genetic variability in the human immune system may affect susceptibility to, and severity of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19).

Genetic variation not an obstacle to gene drive strategy to control mosquitoes
New research from entomologists at UC Davis clears a potential obstacle to using CRISPR-Cas9 'gene drive' technology to control mosquito-borne diseases such as malaria, dengue fever, yellow fever and Zika.

Genetic variation gives mussels a chance to adapt to climate change
Existing genetic variation in natural populations of Mediterranean mussels allows them to adapt to declining pH levels in seawater caused by carbon emissions.

A genetic tug-of-war between the sexes begets variation
In species with sexual reproduction, no two individuals are alike and scientists have long struggled to understand why there is so much genetic variation.

Scientists identify genetic variation linked to severity of ALS
A discovery made several years ago in a lab researching asthma at Wake Forest School of Medicine may now have implications for the treatment of amyotrophic lateral sclerosis (ALS), a disease with no known cure and only two FDA-approved drugs to treat its progression and severity.

Genetic variation contributes to individual differences in pleasure
Differences in how our brains respond when we're anticipating a financial reward are due, in part, to genetic differences, according to research with identical and fraternal twins published in Psychological Science, a journal of the Association for Psychological Science.

Read More: Genetic Variation News and Genetic Variation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to