New mosquito control strategy proves successful against dengue fever

February 10, 2005

Over 380,000 people have been protected from dengue fever in Vietnam thanks to the implementation of a novel strategy to control mosquitoes in the country, concludes a report in this week's issue of THE LANCET.

Dengue fever is the most common insect-borne virus infection, causing more than 50 million infections, 500 000 cases of dengue haemorrhagic fever and at least 12 000 deaths per year. The mosquito, Aedes aegypti, is the major global vector of dengue viruses. It needs stagnant water to breed and is commonly found in water storage containers.

Brian Kay (Royal Brisbane Hospital, Queensland, Australia) and Vu Sinh Nam (Ministry of Health, Vietnam) developed a mosquito control strategy and evaluated it in12 provinces in Vietnam from 1998 to 2003. Their strategy involves inoculating large water storages with crustaceans called Mesocyclops, which feed on mosquito larvae and targeting containers that produce the most mosquito larvae. Community education and activities, such as the collection of discarded containers, also form an important part of the strategy.

The authors report that A aegypti has been eradicated in most villages in the programme and no cases of dengue fever have been reported in any of the villages since 2002. The findings suggest that this strategy is sustainable in Vietnam and applicable where the major sources of A aeygpti are large water storage containers.

Professor Brian Kay concludes: "Although the government of Vietnam has adopted this strategy into their national programme, the challenge is to transfer this framework to the rest of Southeast Asia and beyond. Whereas the hierarchical structure of society in Vietnam undoubtedly affected successful adoption of our model, we judge the key factor in motivating communities to be perception of the seriousness of the dengue problem. As the global prognosis is poor, we predict that this model, or modification of it, will become increasingly important."

In an accompanying commentary Simon Hales (Wellington School of Medicine and Health Sciences, New Zealand) and Wilbert van Panhuis (Catholic University of Louvain, Belgium) write that it is not clear how successful this strategy might be in cities or in other countries.

Dr Hales states: "Kay and Nam show that low-technology approaches to vector control can be effective if well planned and supported, with strong emphasis on community participation. Their strategy is not a universal answer to the problem of dengue, but has the potential to make an important difference in rural communities."
-end-
Contact: Professor Brian H Kay, Queensland Institute of Medical Research, Royal Brisbane Hospital, QLD 4049, Australia.
T) 61-733-620-350
brianK@qimr.edu.au

(comment): Dr Simon Hales, Wellington School of Medicine, Newtown, Wellington, PO Box 7343, Wellington South, New Zealand.
T)64-438-55999
simon.hales@otago.ac.nz

Lancet

Related Dengue Fever Articles from Brightsurf:

Researchers validate rapid tests to detect dengue, Zika, yellow fever and other viruses
The method identifies and distinguishes between flaviviruses that cause many diseases in humans and animals in Brazil.

Breakthrough on curbing dengue
Scientists from Australia's national science agency, CSIRO, and the University of California San Diego have engineered the first breed of genetically modified mosquitoes resistant to spreading all four types of the dengue virus.

Mosquitoes engineered to repel dengue virus
An international team of scientists has synthetically engineered mosquitoes that halt the transmission of the dengue virus.

Cellular culprit suspected of pushing dengue fever from bad to worse is cleared by transcripts
No one knows what makes a mild dengue viral infection morph into a severe and sometimes deadly dengue hemorrhagic fever/dengue shock syndrome.

Forecasting dengue: Challenges and a way forward
International collaboration is finding new ways to improve how scientists develop and test models to forecast dengue infection.

Anemia may contribute to the spread of dengue fever
Mosquitoes are more likely to acquire the dengue virus when they feed on blood with low levels of iron, researchers report in the 16 September issue of Nature Microbiology.

People's initial immune response to dengue fever analyzed
Researchers have come one step closer to understanding how our immune system responds to acute dengue fever, a disease that has affected hundreds of thousands of people in Southeast Asia this summer alone.

Possible treatment on the horizon for severe dengue disease
New study reveals enzyme plays key role in potentially fatal dengue haemorrhagic fever and shock; suggests clinically approved tryptase inhibitor could be key in future targeted treatment.

A new picture of dengue's growing threat
New research shows the expanded risk of dengue virus infection through 2080, with detailed maps for 2020, 2050 and 2080.

Shedding light on the burden of dengue in Bangladesh
Dengue, also known as dengue fever, is a viral disease transmitted to humans by mosquitoes of the genus Aedes.

Read More: Dengue Fever News and Dengue Fever Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.