Mother bats expert at saving energy

February 10, 2010

In order to regulate their body temperature as efficiently as possible, wild female bats switch between two strategies depending on both the ambient temperature and their reproductive status. During pregnancy and lactation, they profit energetically from clustering when temperatures drop. Once they have finished lactating, they use torpor* to a greater extent, to slow their metabolic rate and drop their body temperature right down so that they expend as little energy as possible. These findings by Iris Pretzlaff, from the University of Hamburg in Germany, and colleagues, were just published online in Springer's journal Naturwissenschaften - The Science of Nature.

When energy demands are high, such as during pregnancy and lactation, female bats need to efficiently regulate their body temperature to minimize energy expenditure. In bats, energy expenditure is influenced by environmental conditions, such as ambient temperature, as well as by social thermoregulation - clustering to minimize heat and energy loss. Torpor, another common temperature regulation strategy, has disadvantages for reproductive females, such as delayed offspring development and compromised milk production.

Pretzlaff and team investigated, for the first time in the wild, the thermoregulation strategies used by communally roosting Bechstein's bats during different periods of their reproductive cycle - pre-lactation, lactation, and post-lactation. They collected data from two maternity colonies roosting in deciduous forests near Würzburg in Germany, predominantly in bat boxes. The authors measured ambient temperature over those three periods as well as the bats' metabolic rate by using respirometry (measuring the rate of oxygen consumption).

They found that the bats' metabolic rate was strongly influenced by the ambient temperature. However, by roosting in groups (social thermoregulation), the bats were able to regulate their body temperature more effectively, despite changes in daily ambient temperature.

The bats also used torpor to minimize energy expenditure, particularly post-lactation - more than twice as often than during the other two periods. This suggests that they predominantly use torpor once they can afford to do so without compromising offspring development and milk production. They also formed much smaller groups post-lactation when temperatures were lower because roosting in smaller groups reduces the risk of disturbances by conspecifics. This resulted in longer torpor bouts and therefore longer periods of energy saving.

The authors conclude: "We were able to demonstrate on wild Bechstein's bats, during different reproductive periods, the significance of behavioral and physiological flexibility for optimal thermoregulatory behavior. Our study also highlights the importance of field studies, where the animals can use their behavioural and physiological repertoire, which is often not possible under the generally more controlled regimes in laboratory studies."
-end-
*temporary hibernation

Reference

1. Pretzlaff I et al (2010). Communally breeding bats use physiological and behavioural adjustments to optimize daily energy expenditure. Naturwissenschaften. DOI 10.1007/s00114-010-0647-1

The full-text article is available to journalists as a pdf.

Springer

Related Bats Articles from Brightsurf:

These masked singers are bats
Bats wear face masks, too. Bat researchers got lucky, observing wrinkle-faced bats in a lek, and copulating, for the first time.

Why do bats fly into walls?
Bats sometimes collide with large walls even though they detect these walls with their sonar system.

Vampire bats social distance when they get sick
A new paper in Behavioral Ecology finds that wild vampire bats that are sick spend less time near others from their community, which slows how quickly a disease will spread.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed

Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.

A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.

Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.

Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Read More: Bats News and Bats Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.