Study challenges widely accepted theory of Yellowstone formation

February 10, 2016

CHAMPAIGN, Ill. -- Understanding the complex geological processes that form supervolcanoes could ultimately help geologists determine what triggers their eruptions. A new study using an advanced computer model casts doubt on previously held theories about the Yellowstone supervolcano's origins, adding to the mystery of Yellowstone's formation.

"Our model covered the entire history of Yellowstone volcanic activities," said Lijun Liu, a geology professor at the University of Illinois. Liu's computer model accounted for the last 40 million years, prior to even the earliest signs of Yellowstone's volcanism.

Yellowstone is one of the largest remaining active supervolcanoes. True to its name, a supervolcano is capable of erupting on a much larger scale than an ordinary volcano. The origins of Yellowstone are still under much debate. One of the most prevalent views is that Yellowstone's supervolcano was formed by a vertical column of hot rocks rising from the top of the earth's core, known as a mantle plume.

"The majority of previous studies have relied on conceptual, idealized models, which are not physically and geologically accurate," Liu said. Some recent studies reproduced key geophysical factors in a laboratory setting, including a rising plume and a sinking oceanic plate. However, these studies failed to account for the comprehensive set of geological variables that change over time, influencing the volcanic history.

"Our physical model is more sophisticated and realistic than previous studies, because we simultaneously consider many more relevant dynamic processes," Liu said.

Using the Blue Waters supercomputer at the National Center for Supercomputing Applications at the U. of I., one of the fastest supercomputers in the world, Liu's team created a computer model that replicated both the plate tectonic history of the surface and the geophysical image of the Earth's interior. This study is the first to use a high-performance supercomputer to interpret the layers of complicated geophysical data underlying Yellowstone, Liu said.

The main goal of the study was to examine whether the initiation and subsequent development of the Yellowstone volcanic system was driven by a mantle plume. The simulated data showed that the plume was blocked from traveling upward toward the surface by ancient tectonic plates, meaning that the plume could not have played a significant role in forming Yellowstone, Liu said.

The researchers published their findings in the journal Geophysical Research Letters.

The researchers also examined many other factors that could have played a role in forming Yellowstone. These simulations discounted most of the other theories of Yellowstone's origins, Liu said. As a result, formation of the Yellowstone volcanic system remains mysterious.

Supervolcanoes are hazardous natural phenomena that evoke public concern, partly because their formation is not well understood. While this area of research is still far from predicting eruptions, Liu said, improving the fundamental understanding of the underlying dynamics of supervolcano formation is key to many future applications of relevant geophysical knowledge.

"This research indicates that we need a multidisciplinary approach to understand complicated natural processes like Yellowstone," Liu said. "I know people like simple models, but the Earth is not simple."
-end-
The National Science Foundation supported this work.

Editor's notes:

To reach Lijun Liu, call 217-300-0378; email ljliu@illinois.edu.

The paper "The Role of a Mantle Plume in the Formation of Yellowstone Volcanism" is available online and from the News Bureau.

University of Illinois at Urbana-Champaign

Related Yellowstone Articles from Brightsurf:

Discovery of ancient super-eruptions indicates the yellowstone hotspot may be waning
Throughout Earth's long history, volcanic super-eruptions have been some of the most extreme events ever to affect our planet's rugged surface.

Reintroduction of wolves tied to return of tall willows in Yellowstone National Park
The reintroduction of wolves into Yellowstone National Park is tied to the recovery of tall willows in the park, according to a new Oregon State University-led study.

Bison in northern Yellowstone proving to be too much of a good thing
Increasing numbers of bison in Yellowstone National Park in recent years have become a barrier to ecosystem recovery in the iconic Lamar Valley in the northern part of the park.

What happens under the Yellowstone Volcano
A recent study by Bernhard Steinberger of the German GeoForschungsZentrum and colleagues in the USA helps to better understand the processes in the Earth's interior beneath the Yellowstone supervolcano.

Fearing cougars more than wolves, Yellowstone elk manage threats from both predators
Wolves are charismatic, conspicuous, and easy to single out as the top predator affecting populations of elk, deer, and other prey animals.

What drives Yellowstone's massive elk migrations?
Yellowstone's migratory elk rely primarily on environmental cues, including a retreating snowline and the greening grasses of spring, to decide when to make the treks between their winter ranges and summer ranges, shows a new study led by University of California, Berkeley, researchers.

Aftershocks of 1959 earthquake rocked Yellowstone in 2017-18
A swarm of more than 3,000 small earthquakes in the Maple Creek area (in Yellowstone National Park but outside of the Yellowstone volcano caldera) between June 2017 and March 2018 are, at least in part, aftershocks of the 1959 quake.

Resilience of Yellowstone's forests tested by unprecedented fire
The University of Wisconsin-Madison's Monica Turner and her team describe what happens when Yellowstone -- adapted to recurring fires every 100 to 300 years -- instead burns twice in fewer than 30 years.

Yellowstone elk don't budge for wolves say scientists
Elk roam the winter range that straddles the northern boundary of Yellowstone National Park with little regard for wolves, according to a new study illustrating how elk can tolerate living in close proximity to the large predator.

Researchers find broad impacts from lake trout invasion in Yellowstone
The scientists analyzed data spanning more than four decades and concluded that the impact of lake trout in Yellowstone Lake -- in particular, the decline of native cutthroat trout -- has cascaded across the lake, its tributaries and the surrounding ecosystem.

Read More: Yellowstone News and Yellowstone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.