Lecithin enhances antimicrobial properties of the essential oil, eugenol

February 10, 2017

Washington, DC - Feb. 10, 2017 - Lecithin, a natural emulsifier commonly used in processed foods, synergistically enhances the antimicrobial properties of the natural essential oil, eugenol, but only when applied in very small quantities. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

"This is the first time that lecithin has been shown to exhibit synergism in combination with a bioactive compound at a critical concentration," said corresponding author Federico M. Harte, PhD, associate professor of food science, Pennsylvania State University, State College, PA.

The research began serendipitously. Lecithin had been known to improve the physical stability of essential oils in aqueous systems, including eugenol, which is derived from clove.

"Our initial goal was to reduce the droplet size of eugenol using high pressure homogenization," said Harte. The purpose of shrinking the droplet size was to put each bacterium in contact with as many tiny eugenol droplets as possible. "In order to increase the antimicrobial power of eugenol, we thought it was better to have huge numbers of nanoscale droplets in contact with one bacterium than to have a single milliliter diameter droplet with only one point of contact with a bacterium," said Harte.

When they failed to squeeze the droplets down to less than 100 nm, "we decided to add a small amount of lecithin with the hope of creating even smaller eugenol droplets," said Harte. (Emulsifiers reduce the size of droplets in target liquids.) At this point, the investigation seemed to go awry. Holding that size constant, they obtained antimicrobial activity that varied unpredictably, "suggesting high experimental error," said Harte.

From there, the investigators proceeded, keeping the eugenol content constant, while assaying different tiny amounts of lecithin, said Harte. These experiments demonstrated that at a critical concentration, lecithin synergistically increased eugenol's antimicrobial properties.

The most obvious benefit from the research would be to use lecithin to boost the antimicrobial properties of natural components in foods, said Harte. More generally, "Our research shows that lecithin has bioactive properties that we have ignored until now. What are the consequences in terms of specific benefits or hazards for human beings is difficult to predict at this point."

Harte plans to investigate the potential of lecithin to alter the permeability of mammalian cells, research that he emphasizes is fairly basic, but which could ultimately lead to biomedical applications. One very interesting possibility would be to change the permeability of the blood brain barrier, in order to enable passage of insoluble drugs. "But it's way too soon to make predictions," said Harte.
The American Society for Microbiology is the largest single life science society, composed of over 48,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Bacterium Articles from Brightsurf:

Root bacterium to fight Alzheimer's
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer's.

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.

Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.

Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.

Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.

How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.

Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).

The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.

Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.

Read More: Bacterium News and Bacterium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.