X-ray to study micronutrients in human minibrains

February 10, 2017

Micronutrients and minerals play a key role during human fetal development. A study published in PeerJ this week describes the composition and distribution of some elements in human minibrains created in the lab.

Until today, the study of nutrients in brains was restricted to postmortem or non-human tissue. Human brain organoids - tiny tridimensional structures created from human stem cells in vitro - helped to understand the dynamics of nutrients during neurodevelopment.

Researchers analyzed human brain organoids, also known as minibrains, by synchrotron radiation, a sort of X-ray that allows the identification of the atomic composition of micronutrients. This technique consists of exciting tissue samples in order to quantify the unique photon signature of each atom. In doing so, they described how phosphorus, sulfur, potassium, calcium, iron and zinc are distributed during brain formation.

Simone Cardoso, Associate Professor at the Institute of Physics at Federal University of Rio de Janeiro, highlights the interdisciplinary nature of the study, which involved biologists and physicists. "This allows us to gather a wide range of scientific expertise to plan and perform the experiments".

The minibrains were up to 45-days old. The authors described the distribution of nutrients in two different stages of development: an initial one, of intense cellular proliferation (day 30); and at a second time point, when cells start to become neurons and organize themselves into layers (day 45).

The results show that the concentration and distribution of micronutrients are related to the stage of development and similar to previous data obtained from postmortem brain samples.

It is very clear that mothers' diet during pregnancy has long-term effects on fetal development. The observed nutrients are essential for the appropriate formation of the brain. The lack of some of them during prenatal development is also related to memory deficits and psychiatric disorders, such as schizophrenia. "This study reinforces how important minibrains can be as a model to investigate several aspects of brain development", says Stevens Rehen, the principal investigator of the study and a researcher working at the D' Or Institute for Research and Education (IDOR) and at the Institute of Biomedical Sciences at Federal University of Rio de Janeiro in Brazil.
-end-
The study was done at IDOR, in collaboration with researchers from the Institute of Biomedical Sciences, the Institute of Physics, both at Federal University of Rio de Janeiro, and the Brazilian Synchrotron Light Laboratory (LNLS). Funding was provided by the Brazilian Development Bank (BNDES); Funding Authority for Studies and Projects (FINEP); National Council of Scientific and Technological Development (CNPq); Foundation for Research Support in the State of Rio de Janeiro (FAPERJ); Coordination for the Improvement of Higher Education Personnel (CAPES) and LNLS.

D'Or Institute for Research and Education

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.