Nav: Home

A warm relationship between corals and bacteria

February 10, 2017

Bacteria in certain microbiomes appear to help corals adapt to higher water temperatures and protect against bleaching, as shown by a KAUST-led research team1.

Coral animals rely on algal and bacterial symbionts, known as their microbiome, to function and thrive. These mutually beneficial relationships could prove vital if corals are to survive the rapid warming of the oceans because short-lived bacteria can adapt more quickly than long-lived corals and thus may offer corals some protection.

"Our challenge is to untangle and understand the symbiotic interactions between corals and other organisms," said Associate Professor of Marine Science Christian Voolstra at the Red Sea Research Center in KAUST, who led the project in collaboration with scientists at Stanford University. "We designed an experiment that allowed us to monitor coral-bacterial interactions over time and assess their responses to changes in water temperature."

The team conducted their research in South Pacific reef pools off of Ofu Island in the National Park of American Samoa. They chose two pools in close proximity that hosted the same coral species, Acroporahyacinthus, but that had different naturally occurring water temperatures: one pool had a lower temperature range, rarely exceeding 32 degrees Celsius, while the other fluctuated between 25 and 35 degrees Celsius.

The international team transplanted some coral fragments from one pool to the other and closely monitored them and their associated bacteria in both their native and new environments.

"Seventeen months after transplantation, we conducted a short-term heat-stress experiment and found that the corals transplanted from the colder to the warmer environment had changed their associated bacteria and were more heat resistant," explained Voolstra. "Their microbiome was similar to the corals native to the warmer pool. This suggests that bacterial associations are flexible and can potentially help corals adapt to changing environments--an exciting outcome!"

In the stress experiment, corals native to the cooler pool bleached significantly, while corals moved to the warmer pool 17 months earlier bleached less, in line with their newly acquired microbiome. Further analysis of the distinct microbial communities in the pools showed that the higher-temperature microbiomes had a higher-carbohydrate metabolism and a more functional sugar-transport system.

"Our next step is to prove that specific bacteria directly contribute to the thermal tolerance of the host," said Voolstra. "We can do this by showing that the absence of a bacterium renders the coral host heat sensitive, whereas an association with the same bacterium makes coral more heat tolerant."

"This is challenging because finding the right bacteria is like finding a needle in a haystack, but we'll go for it," said Voolstra.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...