Nav: Home

HSE experts investigate how order emerges from chaos

February 10, 2017

Igor Kolokolov and Vladimir Lebedev, scientific experts from HSE's Faculty of Physics and the Landau Institute for Theoretical Physics of Russian Academy of Sciences, have developed an analytical theory, which binds the structure of coherent vortices formed due to inverse cascades in 2-D turbulence with the statistical properties of hydrodynamic fluctuations. Uncovering this link can be useful in identifying the causes of the particular characteristics of such atmospheric phenomena as cyclones and anticyclones. Their research is presented in an article published in the Journal of Fluid Mechanics.

According to Vladimir Lebedev, one of the article's authors, 'this concerns how order comes out of chaos,' noting: 'we were able to generate analytical scheme, which, explains the results of numerical and laboratory experiments where coherent vortices (stable vortex formations) are observed by relating vortex characteristics to the statistical properties of chaotic fluctuations.'

The article 'Velocity Statistics Inside Coherent Vortices Generated by the Inverse Cascade of 2-D Turbulence', published in the Journal of Fluid Mechanics, presents a consistent analytical theory, which describes both the intensive mean flow inside the vortices and the fluctuations therein. Namely, the research indicates that the vortices possess a universal structure, when there is an interval, the azimuth speed does not depend on distance from the vortex center. Statistical properties of the fluctuations in the universal interval are established. They can be used, for instance, to determine advection and mixing of pollutants in the turbulent flow.

In short, the theory developed helps to explain the outcomes of laboratory experiments and numerical modelling of 2-D turbulence where coherent vortices had earlier been observed. The scientists note that this research does not rely on semiempirical formulae, whereby general conclusions are made about computational and natural experiments, but rather the correlations derived from first principles. The results of the analysis are valuable owing to their predictive power, as well as insight into such phenomena.

Furthermore, the article presents the latest results of the scientists' efforts to analyze coherent vortices in 2-D turbulence, which the authors have been investigating for more than a decade.

As both Kolokolov and Lebedev note, despite the fact that geophysics is much richer than fluid-film hydrodynamics, there are grounds to consider large-scale atmospheric phenomena such as cyclones, anticyclones and hurricanes as coherent structures that emerge out of 'chaos'. This, in turn, enriches our understanding of the laws controlling appearance of such atmospheric phenomena. Furthermore, this may, over the long-term, even offer us with possibilities to manage the phenomena.
-end-


National Research University Higher School of Economics

Related Physics Articles:

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.
Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.
Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.
Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.
Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.