Nav: Home

Ancient signals from the early universe

February 10, 2017

For the first time, theoretical physicists from the University of Basel have calculated the signal of specific gravitational wave sources that emerged fractions of a second after the Big Bang. The source of the signal is a long-lost cosmological phenomenon called "oscillon". The journal Physical Review Letters has published the results.

Although Albert Einstein had already predicted the existence of gravitational waves, their existence was not actually proven until fall 2015, when highly sensitive detectors received the waves formed during the merging of two black holes. Gravitational waves are different from all other known waves. As they travel through the universe, they shrink and stretch the space-time continuum; in other words, they distort the geometry of space itself. Although all accelerating masses emit gravitational waves, these can only be measured when the mass is extremely large, as is the case with black holes or supernovas.

Gravitational waves transport information from the Big Bang

However, gravitational waves not only provide information on major astrophysical events of this kind but also offer an insight into the formation of the universe itself. In order to learn more about this stage of the universe, Prof. Stefan Antusch and his team from the Department of Physics at the University of Basel are conducting research into what is known as the stochastic background of gravitational waves. This background consists of gravitational waves from a large number of sources that overlap with one another, together yielding a broad spectrum of frequencies. The Basel-based physicists calculate predicted frequency ranges and intensities for the waves, which can then be tested in experiments.

A highly compressed universe

Shortly after the Big Bang, the universe we see today was still very small, dense, and hot. "Picture something about the size of a football," Antusch explains. The whole universe was compressed into this very small space, and it was extremely turbulent. Modern cosmology assumes that at that time the universe was dominated by a particle known as the inflaton and its associated field.

Oscillons generate a powerful signal

The inflaton underwent intensive fluctuations, which had special properties. They formed clumps, for example, causing them to oscillate in localized regions of space. These regions are referred to as oscillons and can be imagined as standing waves. "Although the oscillons have long since ceased to exist, the gravitational waves they emitted are omnipresent - and we can use them to look further into the past than ever before," says Antusch.

Using numerical simulations, the theoretical physicist and his team were able to calculate the shape of the oscillon's signal, which was emitted just fractions of a second after the Big Bang. It appears as a pronounced peak in the otherwise rather broad spectrum of gravitational waves. "We would not have thought before our calculations that oscillons could produce such a strong signal at a specific frequency," Antusch explains. Now, in a second step, experimental physicists must actually prove the signal's existence using detectors.

University of Basel

Related Black Holes Articles:

Supermassive black holes found in 2 tiny galaxies
U astronomers and colleagues have found two ultra-compact dwarf galaxies with supermassive black holes, the second and third such galaxies found to harbor the objects.
Stars born in winds from supermassive black holes
Observations using ESO's Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies.
Did LIGO detect black holes or gravastars?
After the first direct detection of gravitational waves that was announced last February by the LIGO Scientific Collaboration and made news all over the world, Luciano Rezzolla (Goethe University Frankfurt, Germany) and Cecilia Chirenti (Federal University of ABC in Santo André, Brazil) set out to test whether the observed signal could have been a gravastar or not.
New research reveals hundreds of undiscovered black holes
Computer simulations of a spherical collection of stars known as 'NGC 6101' reveal that it contains hundreds of black holes, until now thought impossible.
Chorus of black holes radiates X-rays
The NuSTAR mission is identifying which black holes erupt with the highest-energy X-rays.
Did the LIGO gravitational waves originate from primordial black holes?
Binary black holes recently discovered by the LIGO-Virgo collaboration could be primordial entities that formed just after the Big Bang, report Japanese astrophysicists.
A new look at the galaxy-shaping power of black holes
Data from a now-defunct satellite is providing new insights into the complex tug-of-war between galaxies, the hot plasma that surrounds them, and the giant black holes that lurk in their centers.
The energy spectrum of particles will help make out black holes
Scientists from MIPT, the Institute for Theoretical and Experimental Physics, and the National Research University Higher School of Economics have devised a method of distinguishing black holes from compact massive objects that are externally indistinguishable from one another.
Using gravitational waves to catch runaway black holes
Black holes are the most powerful gravitational force in the universe.
Black holes and measuring gravitational waves
The supermassive black holes found at the center of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to work led by University of Southampton astronomer Dr.

Related Black Holes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...