NIH scientists link higher maternal blood pressure to placental gene changes

February 10, 2020

Higher maternal blood pressure in pregnancy is associated with chemical modifications to placental genes, according to a study by researchers from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), part of the National Institutes of Health (NIH). The changes involve DNA methylation, the binding of compounds known as methyl groups to DNA, which can alter a gene's activity. Exposure to high blood pressure in the womb increases the risk for impaired fetal growth and the risk for cardiovascular disease in adult life. Ultimately, the findings could yield information on the earliest origins of cardiovascular disease and how to prevent it from occurring.

The researchers conducted a comprehensive genetic analysis, called an epigenome-wide association study (EWAS), on biopsies of placentas delivered from 301 pregnant women in the NICHD Fetal Growth Study. EWAS detects DNA methylation and other changes to gene functioning. The authors believe their study is the first EWAS to compare placental DNA methylation to maternal blood pressure across trimesters. The study team found distinct patterns of DNA methylation in the placental tissue, which corresponded with the timing of blood pressure elevations in pregnancy. Many of the methylated genes were found in earlier studies to be involved in cardiovascular functioning.

The researchers hope to study patterns of DNA methylation in larger groups of pregnant women, including those with pregnancy-associated blood pressure disorders such as preeclampsia.
-end-
Funding for the work was provided by NICHD, the National Institute on Minority Health and Health Disparities and the National Institute of Diabetes and Digestive and Kidney Diseases, all part of NIH.

REFERENCE:

Workalemahu T, Ouidir M, Shrestha D, Wu J, Grantz KL, and Tekola-Ayele F. Differential DNA methylation in placenta associated with maternal blood pressure during pregnancy. Hypertension DOI: 10.1161/HYPERTENSIONAHA.119.14509 (2020)

About the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD): NICHD leads research and training to understand human development, improve reproductive health, enhance the lives of children and adolescents, and optimize abilities for all. For more information, visit https://www.nichd.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov.

NIH/Eunice Kennedy Shriver National Institute of Child Health and Human Development

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.