Nav: Home

New repair mechanism for DNA breaks

February 10, 2020

Chromosomal breaks are the most harmful damage for cells. If they are not repaired, they block the duplication and segregation of chromosomes, stop the growth cycle and cause cell death. These breaks appear frequently in tumour cells and are produced spontaneously during the replication of genetic material. To be able to repair this damage in the genetic material, the cell transfers the information from the intact daughter copy to the broken copy, which is known as recombination of sister chromatids.

In a project recently published by the review Nature Communications, researchers from the University of Seville and the Andalusian Centre of Molecular Biology and Regenerative Medicine (CABIMER) have identified new factors that are necessary for the repair of these breaks. These factors, in contrast with those already known, only affect the repair between sister chromatids of breaks that have arisen during chromosome duplication. Specifically, they are proteins that modify 'histones', which are the basic proteins that form the structure of the chromosomes.

The research group has shown that the inability to repair breaks in cells lacking these proteins derives from a deficient cohesin load. These are the proteins that keep the sister chromatids paired and together until their segregation in meiosis. With the lessening of cohesion between the chromatids, the repair is defective which leave many breaks unrepaired and increases the chromosomal reorganisation.

The project carried out on the organism model Saccharomyces has identified new factors involved on the maintenance of genome integrity and a new mechanism with which the cohesin load in the chromosomes can be regulated, which could be of great value for deciphering the multiple mechanisms responsible for genome instability in the tumour cells and different neurodegenerative pathologies.

This study corresponds to the doctoral thesis of Pedro Ortega, directed by the teachers Belén Gómez-González and Andrés Aguilera. It had financing from the Asociación Española Contra el Cáncer (AECC), the European Research Council and the Ministry of Economy and Competiveness (Ministerio de Economia y Competitividad).
-end-


University of Seville

Related Chromosomes Articles:

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.
Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
Key similarities discovered between human and archaea chromosomes
A study led by Indiana University is the first to reveal key similarities between chromosomes in humans and archaea.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Human artificial chromosomes bypass centromere roadblocks
Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere.
Does rearranging chromosomes affect their function?
Molecular biologists long thought that domains in the genome's 3D organization control how genes are expressed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
More Chromosomes News and Chromosomes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.