Nav: Home

Quantum fluctuations sustain the record superconductor

February 10, 2020

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing electrical transport with no loss, ultra efficient electrical engines or generators, as well as the possibility of creating huge magnetic fields without cooling. The recent discoveries of superconductivity first at 200 kelvin in hydrogen sulfide and later at 250 kelvin in LaH10 have spurred attention to these materials, bringing hopes for reaching room temperatures soon. It is now clear that hydrogen-rich compounds can be high-temperature superconductors. At least at high pressures: both discoveries were made above 100 gigapascals, one million times atmospheric pressure.

The 250 kelvin (-23ºC) obtained in LaH10, the usual temperature at which home freezers work, is the hottest temperature for which superconductivity has ever been observed. The possibility of high-temperature superconductivity in LaH10, a superhydride formed by lanthanum and hydrogen, was anticipated by crystal structure predictions back in 2017. These calculations suggested that above 230 gigapascals a highly symmetric LaH10 compound (Fm-3m space group), with a hydrogen cage enclosing the lanthanum atoms (see figure), would be formed. It was calculated that this structure would distort at lower pressures, breaking the highly symmetric pattern. However, experiments performed in 2019 were able to synthesize the highly symmetric compound at much lower pressures, from 130 and 220 gigapascals, and to measure superconductivity around 250 kelvin in this pressure range. The crystal structure of the record superconductor, and thus its superconductivity, remained therefore not entirely clear.

Now, thanks to the new results published in Nature, we know that atomic quantum fluctuations "glue" the symmetric structure of LaH10 in all the pressure range in which superconductivity has been observed. In more detail, the calculations show that if atoms are treated as classical particles, that is, as simple points in space, many distortions of the structure tend to lower the energy of the system. This means that the classical energy landscape is very complex, with many minima (see figure), like a highly deformed mattress because many people are standing on it. However, when atoms are treated like quantum objects, which are described with a delocalized wave function, the energy landscape is completely reshaped: only one minimum is evident (see figure), which corresponds to the highly symmetric Fm-3m structure. Somehow, quantum effects get rid of everybody in the mattress but one person, who deforms the mattress only in one single point.

Furthermore, the estimations of the critical temperature using the quantum energy landscape agree satisfactorily with the experimental evidence. This supports further the Fm-3m high-symmetry structure as responsible for the superconducting record. The results are especially relevant because they demonstrate how atomic quantum fluctuations can stabilize crystal structures even at more than 100 gigapascals below their classical instability pressure. In fact, this work shows that the "classical" instabilities are due to the enormous electron-crystal lattice interaction that makes this compound a record superconductor. In other words, quantum effects stabilize crystal structures with substantial superconducting temperatures that would otherwise be unstable. Consequently, new hopes are opened to discover high-temperature superconducting hydrogen compounds at much lower pressures than expected classically, maybe even at ambient pressure.
The present work has been led by the research groups of Ion Errea (University of the Basque Country and CFM, San Sebastian, Spain) and José A. Flores-Livas (Sapienza University, Rome, Italy) in collaboration with researchers from the Max-Planck Institute of Microstructure Physics (Halle, Germany), Tohoku University (Sendai, Japan), National Institute for Materials Science (Tsukuba, Japan), Sorbonne University (Paris, France), and the University of Tokyo (Tokyo, Japan)

University of the Basque Country

Related Hydrogen Articles:

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at