Nav: Home

Initial protective role of nervous system's 'star-shaped cells' in sporadic motor neuron disease uncovered

February 10, 2020

Support cells in the nervous system help protect motor neurons in the early-stages of sporadic motor neuron disease, according to new research from the Crick and UCL.

Motor neuron disease is a degenerative condition which destroys the nerve cells (motor neurons) in the brain and spinal cord, which control movement, speech, swallowing and breathing. The most common type of motor neuron disease is amyotrophic lateral sclerosis (ALS), which affects around 5,000 people in the UK at any one time.

The study, published in Brain, found that in this disease, the motor neurons in the brain and spinal cord become sick and die when a protein, called TDP-43, misfolds and accumulates in the wrong place within the motor neurons. Conversely, when this happens in a type of cell that supports motor neurons, called astrocytes, these cells appear comparatively resistant and survive.

When these two types of cells are close together, the more-resistant astrocytes are able to protect motor neurons from the misfolded protein. This rescue-mechanism helps the motor neurons, which are needed to control muscles, live longer.

"The role astrocytes have played in dealing with toxic forms of TDP-43 in motor neurons has not been previously well documented in motor neuron disease. It's exciting that we've now found that they may play an important protective role in the early-stages of this disease," explains Phillip Smethurst, lead author and former postdoc in the Human Stem Cells and Neurodegeneration Laboratory at the Crick. "This has huge therapeutic potential - finding ways to harness the protective properties of astrocytes could pave the way to new treatments. This could prolong their rescue function or find a way to mimic their behaviour in motor neurons so that they can protect themselves from the toxic protein."

This research also established a new model for studying motor neuron disease. This new method more closely resembles the disease in patients as it uses healthy human stem cells, derived from skin cells, and spinal cord tissue samples donated by patients with motor neuron disease, collected post-mortem.

"It is thanks to the selfless donations from people with motor neuron disease, that we were able to study the interplay between motor neurons and astrocytes in conditions that closely resemble what happens in humans. These human cell models are a powerful tool for further studies of motor neuron disease and in the hunt for effective therapies," explains Katie Sidle, co-senior author, neuroscientist and consultant neurologist at the National Hospital for Neurology in Queen Square, University College London Hospitals.

"For the first time, we have been able to create a model of sporadic motor neuron disease by essentially 'transferring' the toxic TDP-43 protein from post-mortem tissue into healthy human stem cell-derived motor neurons and astrocytes in order to understand how each cell type responds to this insult, both in isolation and when mixed together. The insights made in this work are testament to the power of creative collaboration and interdisciplinarity. It is through many years working together as a group of clinicians, pathologists, stem cell biologists, protein biochemists and other experts, and with a joint aim of increasing knowledge about motor neuron disease (to ultimately help find a cure), that these results have been possible," says Rickie Patani, co-senior author, group leader of the Human Stem Cells and Neurodegeneration Laboratory at the Crick, consultant neurologist at the National Hospital for Neurology in Queen Square, University College London Hospitals and Professor of Human Stem Cells and Regenerative Neurology at UCL Queen Square Institute of Neurology.

The Francis Crick Institute

Related Spinal Cord Articles:

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.
Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.
Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.
An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.
Spinal cord is 'smarter' than previously thought
New research from Western University has shown that the spinal cord is able to process and control complex functions, like the positioning of your hand in external space.
The lamprey regenerates its spinal cord not just once -- but twice
Marine Biological Laboratory (MBL) scientists report that lampreys can regenerate the spinal cord and recover function after the spinal cord has been severed not just once, but twice in the same location.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
More Spinal Cord News and Spinal Cord Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at