Pooping out miracles: scientists reveal mechanism behind fecal microbiota transplantation

February 10, 2021

Clostridioides difficile infection (rCDI) occurs in the gut and is caused by the Gram-positive, spore-forming anaerobic bacterium, C. difficile when its spores attach to fecal matter and are transferred from hand to mouth by health care workers. Patients undergoing antibiotic treatment are especially susceptible as the microorganisms that maintain a healthy gut are greatly damaged by the antibiotics.

Treatment of rCDI involves withdrawing the causative antibiotics and initiating antibiotic therapy, although this can be very challenging. Fecal microbiota transplantation (FMT) is considered an effective alternative therapy as it addresses the issue from the ground up by replacing the damaged microflora with a healthy one through a stool transplant.

However, two deaths caused by antibiotic-resistant bacterial infections after FMT were reported in 2019, suggesting that a modification of FMT or alternatives are required to resolve safety concerns surrounding the treatment.

Researchers at Osaka City University and the Institute for Medical Science, University of Tokyo tackled this challenge head on in a great study now published in Gastroenterology.

Using their original analysis pipeline reported in 2020, the researchers obtained intestinal bacterial and viral metagenome information from the fecal samples of nine rCDI patients from Brigham and Women's Hospital in Boston who successfully had a FMT. They revealed the bacteria and phages involved in the pathogenesis of rCDI and the remarkable pathways important for the recovery of intestinal flora function.

By revealing how the bacteriome and virome in the intestine work together as an organ, the research team was able to show how FMT can be as safe as swapping out a bad organ with a good one.

"Intestinal microbiota should definitely be treated as an 'organ'!" says principal investigator Professor Satoshi Uematsu, "FMT drastically changed the intestinal bacteriome and virome and is sure to restore the intestinal bacterial and viral functions."

In the post-COVID-19 world, rCDI will become one of the more pressing international diseases. There is no doubt that FMT is an important therapeutic strategy for rCDI. "In addition to a variety of clinical surveys, comprehensive metagenomic analysis is very important in considering the safety of FMT." say Dr. Kosuke Fujimoto and Prof. Seiya Imoto.
-end-
We are Osaka City University - the oldest research university in Osaka. With 9 undergraduate faculties and 11 graduate schools all dedicated to making urban life better, energy cleaner, and people healthier and happier, we have won numerous awards and have produced 2 Nobel laureates. For more information, please visit our website at https://www.osaka-cu.ac.jp/en

Osaka City University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.