Tailor-made drugs to treat epilepsy or cardiovascular diseases

February 10, 2021

In order for a drug to be effective at the right places in the body, it helps if scientists can predict as accurately as possible how the molecules of that drug will interact with human cells. In a joint research project, scientists from Collaborative Research Centre 1423 at Leipzig University and the Chinese Academy of Sciences in Shanghai have succeeded in elucidating such a structure, namely that of the neuropeptide Y receptor Y2 with one of its ligands. This is the first time that a molecular blueprint for this receptor is available, which will enable the development of tailor-made new drugs, for example to treat epilepsy or cardiovascular diseases. The researchers' findings have now been published in Nature Communications.

The Y2 receptor plays an important role, especially in the peripheral nervous system and in the brain, as it is considered one of the "satiety receptors". It also plays a role in epilepsy as well as in cardiovascular diseases. If these diseases are to be treated with drugs that block the Y2 receptor, it is important to ensure that the drug can target this receptor precisely and exclusively, because some closely related receptors would have exactly the opposite effect. When developing novel drugs, it is therefore essential to obtain highly targeted compounds and to have precise knowledge of their molecular properties.

Researchers led by Professor Annette Beck-Sickinger and Dr Anette Kaiser at Leipzig University have succeeded in showing on the molecular level how substances can block the Y2 receptor. Working with their colleagues in Shanghai, they were able to explain the crystal structure with a bound ligand, validate it by means of numerous biochemical investigations, and transfer it to other systems. The new study also reveals that Y2 receptor blockers bind differently than comparable molecules at the closely related Y1 subtype. This will facilitate further knowledge-based development of selective compounds at both receptors.

The investigation of this receptor family with its endogenous ligands as well as other clinically relevant compounds is one focus of Collaborative Research Centre 1423. The CRC 1423 is a research project being funded for four years by the German Research Foundation (DFG), in which four funding institutions are involved: Leipzig University, Martin Luther University Halle-Wittenberg, Charité - Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine. Researchers from these institutions with backgrounds in biochemistry, biomedicine and computational science are collaborating on an interdisciplinary basis to gain a comprehensive understanding of the effects of structural dynamics on the function of G protein-coupled receptors. The Collaborative Research Centre comprises a total of 19 sub-projects.
-end-


Universität Leipzig

Related Epilepsy Articles from Brightsurf:

Focal epilepsy often overlooked
Having subtler symptoms, a form of epilepsy that affects only one part of the brain often goes undiagnosed long enough to cause unexpected seizures that contribute to car crashes, a new study finds.

Antibodies in the brain trigger epilepsy
Certain forms of epilepsy are accompanied by inflammation of important brain regions.

Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?

Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.

How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.

Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.

Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.

Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.

Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.

Read More: Epilepsy News and Epilepsy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.