Cell biology - Overseers of cell death

February 10, 2021

A new study shows that proteins called IAPs, which can trigger programmed cell death, are inhibited by a specific chemical modification, and reveals that they play a wider role in protein quality control than previously assumed.

N-terminal acetylation - the attachment of an acetyl group (CH3-COO-) directly to the N-terminus of a protein - is one of the most common modifications found in the protein complements of higher organisms. The chemical tag has been linked to a wide variety of cellular signaling pathways. Now researchers led by Tanja Bange (Institute of Medical Psychology, Ludwig-Maximilians-Universitaet (LMU) in Munich) have shown that N-terminal acetylation shields certain proteins from degradation, and inhibits programmed cell death ('apoptosis'). In their unacetylated state, these same proteins can induce apoptosis by interacting with proteins called IAPs. While the acronym refers to the function of IAPs as inhibitors of apoptosis, the new study suggests that they actually have a more general role in protein quality control. The work demonstrates for the first time that two fundamental cellular processes - N-terminal protein acetylation and programmed cell death - are functionally linked. This finding could open up new approaches to cancer therapy. The paper appears in the journal Science Advances.

As their name implies, IAPs are known to participate in the regulation of programmed cell death. They inhibit the process by binding to particular target proteins, and it was previously shown that IAPs can only do so as long as the N-termini of these targets are not acetylated. "In our experiments, we observed that a protein which is not involved in the control of apoptosis also binds exclusively to IAPs in its non-acetylated form," Bange explains. "This prompted us to explore the role of acetylation in the binding of proteins to IAPs in general."

In experiments on cultured cells, Bange and her colleagues were able to show that, as a general rule, IAPs indeed bind to proteins whose N-termini are unacetylated. It is also known that IAPs are able to induce their own destruction as well as the degradation of their binding partners. The authors therefore assume that IAPs have a hitherto unrecognized and general function in the quality control of newly synthesized proteins. "N-terminal acetylation protects proteins from degradation," says Bange. "If its N-terminus is not 'capped' in this way, a protein is recognized as defective by IAPs and destroyed. Conversely, if proteins that lack the modification accumulate in sufficient numbers, apoptosis is triggered."

These results could have therapeutic implications for the treatment of cancer. In many types of cancer, the signaling relays that trigger apoptosis are defective owing to mutation. This closes off one possible treatment option. According to the authors, inhibiting N-terminal acetylation pathways might provide a means of activating IAP function and sensitizing tumor cells to apoptosis.
-end-


Ludwig-Maximilians-Universität München

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.