Rapid ice retreat during last deglaciation parallels current melt rates

February 10, 2021

10,000 km2 of ice disappeared in a blink of an eye from an ice sheet in the Storfjorden Through offshore Svalbard, a new study shows. This dramatic break off was preceded by quite a rapid melt of 2.5 kilometres of ice a year. This parallels the current melt rates in Antarctica and Greenland and worries the scientists behind the study.

"Our measurements of the ice retreat in Storfjorden Through show that the prevailing conditions to the great break off, match what we see in Antarctica and Greenland today. It is uncanny. There are new studies published almost weekly, that show that the retreat of current ice sheets is two to four km a year and that it's speeding up." Says CAGE-professor and first author Tine Lander Rasmussen.

Climatically unstable period

The last deglaciation, 20,000- 10,000 years ago, was a period of coexisting global warming and rapidly shrinking ice sheets. But stating the actual correlation between the two is not as simple as it sounds. The period in question was climatically unstable, and big melts were interrupted by re-freezing and formation of new ice. The speed of the ice retreat, relative to climatic changes, has therefore been difficult to establish.

"We have studied the ice sheet development 20 000 - 10 000 years ago using marine sediment cores. The 12 cores have been collected in the area during the past 18 years, and meticulously analysed for different types of microfossils of single-celled organisms called foraminifera," says Rasmussen.

The biochemistry in the foraminifera fossils helps reconstruct the enormous amount of information about the state of the environment in prehistoric times. The sediments were sliced up in slices representing time periods of 30 to 70 years. Over 70 samples were dated and analyzed.

"What we saw is that the ice sheet starts retreating some 20,000 years ago but lingers on a ridge in the fjord. Then, some 15,000 years ago the atmosphere and ocean temperatures warm up, impacting the ocean circulation. A huge chunk of the ice sheet disappears at the same time. At the start of the Holocene warm period, 11,000 years ago, things really pick up speed. We can't see any more evidence of an ice sheet covering the ocean floor after that time."

Consistent correlation between global warming and ice retreat

The periods of extremely rapid ice sheet retreats are consistently correlating with periods of global warming of oceans and temperature. This is mirrored in ice sheet retreat from other eight Northern Norwegian fjord systems.

"This is strengthening our hypothesis that an increase in ocean temperature and global warming is the direct cause of the chain of the events leading up to the dramatically rapid ice sheet disintegration." Says Rasmussen.

This gives some alarming perspectives on present-day outlook. The great melt of the glacial maximum to the Holocene was 10,000 years in the making. The present climate change is much more rapid.

"The final retreat of the Storfjorden Through ice sheet happened as rapidly in the outer parts as it did further up the through. This means that as soon as warmer oceanic water got access to the ice sheet, it surged pretty rapidly inward from the edge of the ice shelf. To the interior of the sheet itself. We see this happening in Antarctica today. The Larsen A (1995), B (2003) and C (2017) break-offs are examples of this process. "
-end-


UiT The Arctic University of Norway

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.