'Handy pen' lights up when exposed to nerve gas or spoiled food vapors

February 10, 2021

Exposure to some odorless, colorless and tasteless gases, such as nerve agents, can be toxic or even lethal. And having the ability to detect other types of vapors could save people from eating spoiled or rotten food. Easy-to-use portable devices could, therefore, go a long way toward protecting the public. Now researchers reporting in ACS Materials Letters have created a pen-like sensor that changes color when exposed to harmful gases.

Humans can't detect many toxic vapors, such as poisonous nerve agents or volatile amines released from spoiled foods, so a sensor that can notice these gases' very minute concentrations would be useful. Fluorescence-based sensors are a potential solution because they are inexpensive and can reveal trace amounts of compounds. However, some fluorescing compounds clump together once they react with gases, reducing their intensity, and they can require complex fabrication processes. Yet other fluorophores produce more intense light when they are clumped together -- aggregation-induced emission fluorogens (AIEgens). Most of the current detection methods using AIEgens are liquid-based, requiring gases to be dissolved in solution before analysis, and are not easily portable. So, Zhe Jiao, Pengfei Zhang, Haitao Feng, Ben Zhong Tang and colleagues wanted to adapt AIEgens to be integrated into a needle-thin fiber, creating a handheld device whose tip "turns on" in the presence of a particular gas.

The researchers developed two AIEgen-based "handy pens," one for identifying the nerve agent diethyl chlorophosphite (DCP) and the other for amines produced by rotting food. First, they coated silicon dioxide polymer fibers with a thin sol-gel layer to immobilize AIEgens. Next, they added an AIEgen that changes color when it reacts with DCP on one set of fibers, and an AIEgen that reacts with amines on another set. The coated fibers were then placed at the end of a pen-like device with a UV light source inside. The DCP sensor's tip changed from a yellow fluorescence to blue within 30 minutes of exposure to DCP. The amine sensor's tip was initially a mild blue-gray color, but it generated a vibrant yellow-colored light within five minutes when it was exposed to volatile amine vapors. Both sensors reverted to the original hue when exposed to neutralizing vapors, demonstrating that they were reversible. Finally, the team used the amine-responsive handy pen to distinguish between a salmon sample that had been refrigerated and one that had been left at room temperature for 48 hours. The researchers say that other handy pens could be easily developed by using different vapor-sensitive AIEgens, which could be applied to food safety, environmental monitoring or public safety applications.
-end-
The authors acknowledge funding from Science and Technology Planning Project of Guangdong Province of China, Educational Commission of Guangdong Province of China, the Social Science and Technology Development Project of Dongguan, Guangdong International Cooperation Project, the Science and Technology Plan of Shenzhen, the UNSW-CAS Collaborative Research Seed Fund Program and the Shenzhen Institute of Advanced Technology Innovation Program for Excellent Young Researchers.

The abstract that accompanies this paper is available here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.  

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.  

Follow us: Twitter | Facebook

American Chemical Society

Related Color Articles from Brightsurf:

Envision color: Activity patterns in the brain are specific to the color you see
Researchers at the National Eye Institute (NEI) have decoded brain maps of human color perception.

OPD optical sensors that reproduce any color
POSTECH Professor Dae Sung Chung's team uses chemical doping to freely control the colors of organic photodiodes.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Increasing graduation rates of students of color with more faculty of color
A new analysis published in Public Administration found that student graduation rates improve as more faculty employed by a college or university share sex and race/ethnic identities with students.

How much color do we really see?
Color awareness has long been a puzzle for researchers in neuroscience and psychology, who debate over how much color observers really perceive.

Stretchable variable color sheet that changes color with expansion and contraction
Toyohashi University of Technology research team have succeeded in developing a variable color sheet with a film thickness of 400 nanometers that changes color when stretched and shrunk.

High color purity 3D printing
ICFO researchers report on a new method to obtain high color purity 3D objects with the use of a new class of nanoparticles.

Building a better color vision test for animals
University of Cincinnati biologists modified simple electronics to create a color vision test for fiddler crabs and other animals.

The color of your clothing can impact wildlife
Your choice of clothing could affect the behavioral habits of wildlife around you, according to a study conducted by a team of researchers, including faculty at Binghamton University, State University of New York.

Recovering color images from scattered light
Engineers at Duke University have developed a method for extracting a color image from a single exposure of light scattered through a mostly opaque material.

Read More: Color News and Color Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.