Brain tumor study reveals surprising gene deletion and method to overcome drug resistance

February 10, 2021

In far too many cases over the years, scientists have discovered promising new cancer treatments, only to report later that the tumor cells found ways to become resistant. These disappointing results have made overcoming drug resistance a major goal in cancer research.

Now, experts at Cincinnati Children's report success at averting drug resistance in a subtype of brain tumors called glioblastomas. Importantly, the research indicates that the approach may also work in other cancers, such as melanoma, that exhibit a similar pathway of drug resistance.

The method involves inhibiting a protein called SCD and reducing the expression of the transcription factor FOSB (which regulates SCD), so that the tumor cells cannot acquire resistance to the SCD inhibitor. Results were published online Feb. 10, 2021, in the journal

"This is one of the most significant findings from our lab in recent years," says principal investigator 

Much more research is needed before this approach can be tested in people with glioblastomas, but animal model experiments reveal that mice bearing brain tumors survive longer when treated with a combination therapy that includes SCD and FOSB inhibition.

Additionally, using the standard of care chemotherapeutic agent temozolomide (TMZ), mice with advanced tumors initially showed "significant" tumor reduction, but all of the mice relapsed and 80% had died by 50 days post treatment. In contrast, when treated with TMZ in combination with the SCD inhibitor, 80% of the mice survived past 50 days.

How the combination therapy works

The new approach was based on their discovery that some brain tumors have surprisingly low amounts of an enzyme called Stearoyl Co-A Desaturase (SCD). Typically, cancer cells use elevated levels of this enzyme to fuel their uncontrolled growth, which has inspired a number of drugs that target SCD to treat tumors.

However, through analysis of publicly available glioblastoma genetic datasets, Dasgupta and research fellow Nicole Oatman, PhD, discovered that the SCD gene is both deleted as well as its expression suppressed through epigenetic mechanisms in a large subset of glioblastoma patients.

"This finding was surprising given the requirement of SCD in most cancers," says Dasgupta.

While the Dasgupta Lab is still working to understand how glioblastomas survive without SCD, potentially by using alternative pathways that bypass SCD, they determined that glioblastoma cell lines that retain SCD are exquisitely sensitive to SCD inhibitors.

They also found that like most cancer cells, SCD inhibitor-sensitive glioblastomas ultimately acquire resistance to SCD inhibitors. They discovered that FOSB protein plays a central role in regulating SCD levels. When a drug knocks down SCD, FOSB kicks in to rapidly build SCD levels back up. This reinforcing effect overwhelms the anti-SCD medication effects and allows tumors to come roaring back.

Turning off the FOSB protein essentially silences the call for reinforcements, which allows the SCD-inhibiting drugs to be dramatically more effective. The team then expanded their work by finding similar outcomes when testing the combination therapy to treat melanoma, a severe form of skin cancer.

By understanding how this process works, Dasgupta says it will help many scientists re-assess clinical trial results for SCD-inhibiting drugs, which may reveal that some past discoveries that appeared to be failures might still have value in cancer treatment.
-end-
About this study

In addition to Dasgupta and Oatman, co-authors included researchers from Cincinnati Children's Divisions of Human Genetics, Experimental Hematology and Cancer Biology, Biomedical Informatics, Developmental Biology, and the Center for Autoimmune Genomics and Etiology.

Contributors also included researchers with the University of Cincinnati, Brigham and Women's Hospital, Boston; the University of California, San Diego; Memorial Sloan Kettering Cancer Center, NY; and the University of Colorado campus in Aurora, CO.

This work was supported by multiple National Institutes of Health grants (ES007250, NS044080, R01NS097266, R01NS075291 and R01NS099161); Endowed Scholar, Pilot Innovation, and CpG grant awards from Cincinnati Children's; and Cancer Center Affinity and Brain Tumor Center grant awards from the University of Cincinnati.

Cincinnati Children's Hospital Medical Center

Related Melanoma Articles from Brightsurf:

Boosting treatments for metastatic melanoma
University of Cincinnati clinician-scientist Soma Sengupta, MD, PhD, says that new findings from her and Daniel Pomeranz Krummel's, PhD, team might have identified a treatment-boosting drug to enhance effectiveness of therapies for metastatic cancer and make them less toxic, giving patients a fighting chance at survival and improved quality of life.

A promising new tool in the fight against melanoma
An Edith Cowan University (ECU) study has revealed that a key blood marker of cancer could be used to select the most effective treatment for melanoma.

New targets for melanoma treatment
A collaborative study led by Monash University's Biomedicine Discovery Institute and the Olivia Newton-John Cancer Research Institute (ONJCRI) has uncovered new markers (HLA-associated peptides) that are uniquely present on melanoma tumours and could pave the way for therapeutic vaccines to be developed in the fight against melanoma.

Innovative smartphone-camera adaptation images melanoma and non-melanoma
An article published in the Journal of Biomedical Optics (JBO), ''Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,'' shows that standard smartphone technology can be adapted to image skin lesions, providing a low-cost, accessible medical diagnostic tool for skin cancer.

Antihistamines may help patients with malignant melanoma
Can a very common allergy medicine improve survival among patients suffering from the serious skin cancer, malignant melanoma?

Blood test for deadly eye melanoma
A simple blood test could soon become the latest monitoring tool for the early detection of melanoma in the eye.

Analysis of melanoma in US by age groups
This study used registry data to determine annual rates of melanoma in pediatric, adolescent, young adult and adult age groups, and the findings suggest an apparent decrease among adolescent and young adults between 2006 and 2015 but increases in older adults.

Vitamin D dials down the aggression in melanoma cells
Vitamin D influences the behaviour of melanoma cells in the lab by making them less aggressive, Cancer Research UK scientists have found.

B cells linked to immunotherapy for melanoma
Immunotherapy uses our body's own immune system to fight cancer.

Five things to know about melanoma
'Five things to know about ... melanoma' in CMAJ (Canadian Medical Association Journal) provides a brief overview of this malignant skin cancer for physicians and patients.

Read More: Melanoma News and Melanoma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.