Model shows big body of water in Earth's mantle

February 11, 2007

A seismologist at Washington University in St. Louis has made the first 3-D model of seismic wave damping - diminishing - deep in the Earth's mantle and has revealed the existence of an underground water reservoir at least the volume of the Arctic Ocean.

It is the first evidence for water existing in the earth's deep mantle.

Michael E. Wysession, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences, working with former graduate student Jesse Lawrence (now at the University of California, San Diego), analyzed 80,000 shear waves from more than 600,000 seismograms and found a large area in Earth's lower mantle beneath eastern Asia where water is damping out, or attenuating, seismic waves from earthquakes.

The traditional method seismologists use to image the earth below us is to measure the speed of seismic waves. This will provide a sort of CAT scan of the earth's core and mantle. Using wave speeds alone is a problem, however, because they cannot distinguish between temperature and composition variations.

The research is described in a forthcoming monograph, Earth's Deep Water Cycle, which is in press to be published by the American Geophysical Union.

Analyzing damped-out waves

An increasingly popular method, which Wysession used, is to analyze the way waves damp out from their source. If you take a hammer and pound it hard on a desk, waves will go from the source to the end of the table with the mass of the table lessening, or attenuating, the power of waves. A picture near the striking point might topple, but a stapler two feet away might not even budge. Attenuation data tell seismologists how stiff a region is, which is a function of how hot it is and how much water it contains. Looking at the seismic wave speeds and attenuation at the same time can tell whether an anomaly is due to temperature or water.

In analyzing the data, Wysession first saw large patterns associated with known areas where the ocean floor is sinking down into the earth. Beneath Asia, the fallen Pacific sea floor piles up at the base of the mantle. Right above that he observed an "incredibly highly attenuating region, that is both very damping and slightly slow," he said.

"Water slows the speed of waves a little. Lots of damping and a little slowing match the predictions for water very well."

Previous predictions calculated that a cold ocean slab sinking into the earth at 1,200 to 1,4000 kilometers beneath the surface would release water in the rock that would escape the rock and rise up to a region above it, but this was never previously observed.

Beijing anomaly

"That is exactly what we show here, the exact depth and high attenuation amounts right above it," Wysession said. "I call it the Beijing anomaly. Water inside the rock goes down with the sinking slab and it's quite cold, but it heats up the deeper it goes, and the rock eventually becomes unstable and loses its water. The water then rises up into the overlying region, which becomes saturated with water.

" If you combine the volume of this anomaly with the fact that the rock can hold up to about 0.1 percent of water, that works out to be about an Arctic Ocean's worth of water."

In recent years, seismologists have become excited at the possibility of a feature like the Beijing anomaly. The availability of vast amounts of digital seismograms made possible the discovery by Wysession and Lawrence, who wrote many thousands of lines of computer codes to do the analyses.

Seventy percent of the earth is covered by water, which is very important for the earth's geology, serving as a lubricant that allows efficient convection and plate tectonics and the continental collisions that form mountains.

"Water is like a lubricant, constantly oiling the machine of mantle convection which then drives plate tectonics and causes the continents to move about Earth's surface," Wysession said. "Look at our sister planet, Venus. It is very hot and dry inside Venus, and Venus has no plate tectonics. All the water probably boiled off, and without water, there are no plates. The system is locked up, like a rusty Tin Man with no oil."
-end-


Washington University in St. Louis

Related Plate Tectonics Articles from Brightsurf:

Lost and found: UH geologists 'resurrect' missing tectonic plate
A team of geologists at the University of Houston College of Natural Sciences and Mathematics believes they have found the lost plate known as Resurrection in northern Canada by using existing mantle tomography images.

Plate tectonics goes global
A research team led by Dr. WAN Bo from the Institute of Geology and Geophysics (IGG) of the Chinese Academy of Sciences has revealed that plate tectonics went global 2 billion years ago.

Remixed mantle suggests early start of plate tectonics
New Curtin University research on the remixing of Earth's stratified deep interior suggests that global plate tectonic processes, which played a pivotal role in the existence of life on Earth, started to operate at least 3.2 billion years ago.

Why the Victoria Plate in Africa rotates
The East African Rift System is a newly forming plate tectonic boundary at which the African continent is being separated into several plates.

Evidence for plate tectonics on earth prior to 3.2 billion years ago
New research indicates that plate tectonics may have been well underway on Earth more than 3.2 billion years ago, adding a new dimension to an ongoing debate about exactly when plate tectonics began influencing the early evolution of the planet.

Upper-plate earthquakes caused uplift along New Zealand's Northern Hikurangi Margin
Earthquakes along a complex series of faults in the upper plate of New Zealand's northern Hikurangi Subduction Margin were responsible for coastal uplift in the region, according to a new evaluation of local marine terraces.

Breathing? Thank volcanoes, tectonics and bacteria
A Rice University study in Nature Geoscience suggests Earth's first burst of oxygen was added by a spate of volcanic eruptions brought about by tectonics.

What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.

Plate tectonics may have driven 'Cambrian Explosion, study shows
The quest to discover what drove one of the most important evolutionary events in the history of life on Earth has taken a new, fascinating twist.

Zipingpu Reservoir reveals climate-tectonics interplay around 2008 Wenchuan earthquake
A new study led by Prof. JIN Zhangdong from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences provided a new insight on the interplay between climate and tectonics from a sediment record in the Zipingpu Reservoir around the 2008 Wenchuan earthquake.

Read More: Plate Tectonics News and Plate Tectonics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.