Story tips from DOE's Oak Ridge National Laboratory -- February 2009

February 11, 2009

MICROSCOPY -- STEM in liquid . . .

Researchers at ORNL and Vanderbilt University have unveiled a new technique for imaging whole cells in liquid using a scanning transmission electron microscope. Electron microscopy is the most important tool for imaging objects at the nano-scale--the size of molecules and objects in cells. But electron microscopy requires a high vacuum, which has prevented imaging of samples in liquid, such as biological cells." The new technique - liquid STEM - uses a micro-fluidic device with electron transparent windows to enable the imaging of cells in liquid. A team led by Niels de Jonge imaged individual molecules in a cell, with significantly improved resolution and speed compared with existing imaging methods. "Liquid STEM has the potential to become a versatile tool for imaging cellular processes on the nanometer scale," said de Jonge. "It will potentially be of great relevance for the development of molecular probes and for the understanding of the interaction of viruses with cells." The work was recently described in the on-line Proceedings of the National Academy of Sciences. [Contact: Bill Cabage; (865)474-4399,]

BIOLOGY -- Time-saving tool . . .

Scientists studying human health, agriculture and the environment have a powerful new tool to help them better understand microbial processes and how they relate to ecosystems. The GeoChip consolidates into one analysis something that using traditional methods would require dozens of tests and take possibly years to complete, according to co-developer Chris Schadt of ORNL's Biosciences Division. This lab on a chip features more than 24,000 gene probes that target more than 150 functional gene groups involved in biochemical, ecological and environmental processes. The GeoChip is especially useful for bioremediation of sediments and soils, determining the role of microbes in soil and learning how microbial processes are connected to ecosystem responses to human-induced environmental changes such as temperature, moisture and carbon dioxide. This research was funded by the Department of Energy's Office of Biological and Environmental Research. [Contact: Ron Walli; (865) 576-0226;]

CYBERSPACE -- Thwarting threats . . .

Colonies of cyber robots with unique missions can in near real time detect network intruders on computers that support U.S. infrastructure. These "cybots" created for an ORNL software program called UNTAME (Ubiquitous Network Transient Autonomous Mission Entities) may be especially useful for helping government agencies deter, defend, protect against and defeat cyber-attacks. "What scares us the most isn't what we can see, but rather what we can't see," said Joe Trien of the lab's Computational Sciences & Engineering Division. "A coordinated cyber attack could disrupt one or more of U.S. critical infrastructures, and these attacks can reach across the world at the speed of light." Trien led a team of researchers that developed UNTAME. [Contact: Ron Walli; (865)576-0226;]

COMPUTING -- First petascale projects . . .

The National Center for Computational Sciences at Oak Ridge National Laboratory has granted early access to a number of projects to test Jaguar, which has peak performance of 1.6 petaflops and is the most powerful computer in the world for open science. The "Petascale Early Science" period will run approximately 6 months and consist initially of 20 projects, said NCCS Director of Science Doug Kothe. The early phase period seeks to deliver high-impact science results and advancements; harden the system for production; and embrace a broad user community to use the system, Kothe said. Proposals include: modeling to better understand climate change; energy storage and battery technology; cellulose conversion to ethanol; combustion research for more efficient automobile engines; and high-temperature superconductors for more efficient transmission of electricity. Fusion, nuclear energy, materials science, nuclear physics, astrophysics, and carbon sequestration also will be explored. "These early simulations on Jaguar will also help us harden the system for a broader collection of projects later in the year," said Kothe. [Contact: Mike Bradley; (865)576-9553;]
To arrange for an interview with a researcher, please contact the Communications and External Relations staff member identified at the end of each tip. For more information on ORNL and its research and development activities, please refer to one of our Media Contacts. If you have a general media-related question or comment, you can send it to

DOE/Oak Ridge National Laboratory

Related Microscopy Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy News and Microscopy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to