Decreasing insulin resistance prevents obesity-related cardiovascular damage

February 11, 2009

AUGUSTA, Ga. - Knocking out one gene that contributes to insulin resistance appears to prevent much of the cardiovascular damage typically associated with obesity, researchers say.

Cardiovascular disease is the biggest health threat of obesity and Medical College of Georgia researchers trying to understand why have knocked out protein tyrosine phosphatase 1B, or PTP1B, in genetically fat mice that get diabetes.

"Even before you have really bad diabetes, you are walking around obese with your glucose control a little bit off and already beating up your circulation," says Dr. David Stepp, vascular biologist at the MCG Vascular Biology Center and co-director of MCG's Diabetes & Obesity Discovery Institute. "That is the point where you need to be intervening."

If he's right, PTP1B becomes a drug target for obese people who may not yet be diabetic but already have trouble with blood glucose control.

"We have shown cardiovascular function is improved by knocking out this gene. The question is why," says Dr. Stepp, principal investigator on five-year, $2.5 million National Institutes of Health grant that he hopes will help find the answer.

He suspects resistance may again be the problem but this time it's to nitric oxide, a powerful dilator of blood vessels.

Overeating increases glucose so the body increases insulin production in an effort to use or store this important energy source. In people headed toward diabetes, the body begins to miscalculate insulin needs and overproduce; fine control is lost and the high and low insulin swings begin.

"If you are obese, the fasting glucose may be a little bit off but not terrible. What is terrible is you are beginning to lose control," says Dr. Stepp, associate professor in the MCG Schools of Medicine and Graduate Studies. Over time, the body gets in the vicious cycle of making more insulin and paying less attention to it. Blood glucose levels soar while the body has decreased ability to use or discard the fuel. To make matters work, PTP1B is over-expressed in obesity, further hampering the body's ability to deal with glucose by inappropriately turning off insulin receptors. "You have lost your thermostat."

High glucose levels also mean higher levels of super oxides that block nitric oxide, MCG researchers say. "Once you have less nitric oxide, you start getting blood vessel disease," says Dr. David Fulton, vascular biologist at the Vascular Biology Center and senior investigator on the grant. Blood vessels stop dilating as they should, walls become inflamed and thick and clots can form. "You start adding up cardiovascular problems," says Dr. Fulton, associate professor in the MCG Schools of Medicine and Graduate Studies.

"What this gene is telling us is, if you can just improve the fine control, the fact that your fasting glucose is a little off, despite the fact that you are still fat, your cardiovascular function is enormously better," Dr. Stepp says.

Nitric oxide is like a tonic for keeping the cardiovascular system healthy, the researchers say, and nitric oxide levels are an "early casualty" of swinging glucose levels. Obese mice show impaired nitric oxide dilation, a defect corrected by deleting PTP1B. Obese humans also show evidence of impaired blood vessel dilation and vascular remodeling. In an effort to figure out how, the researchers will look at blood flow, blood pressure and vascular remodeling in the PTP1B knockout mice. They want to identify aspects of nitric oxide signaling impaired in obesity and improved with reduced insulin resistance.

"We are trying to identify the molecular mechanisms of cardiovascular disease associated with obesity and track that with improvements in insulin resistance," Dr. Stepp says.

One of the body's natural responses to high glucose levels - sugar sticking to hemoglobin - may be the best measure of swinging glucose levels that need to be stopped. "Even if the blood glucose is normal at that moment, that tells you it has been high, that it's swinging," he says. The sugar-coated hemoglobin also can start sticking to blood vessel walls, a problem deletion of PTP1B also seems to fix. Hemoglobin is a protein and a binding receptor for sugar-modified proteins - receptor for advanced glycation end products, or RAGE - is up-regulated in obesity and down-regulated in mice missing PTP1B.
-end-


Medical College of Georgia at Augusta University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.