New method to stimulate immune system may be effective at reducing amyloid burden in Alzheimer's

February 11, 2009

Researchers at NYU Langone Medical Center have discovered a novel way to stimulate the innate immune system of mice with Alzheimer's disease (AD) - leading to reduced amyloid deposits and the prevention of Alzheimer's disease related pathology - without causing toxic side effects. The study entitled "Induction of Toll-like Receptor 9 Signaling as a Method for Ameliorating Alzheimer's Disease Related Pathology" was published in The Journal of Neuroscience.

NYU Langone researchers stimulated the innate immune system via the Toll-like 9 receptor (TLR9) via treatment with cytosine-guanosine containing DNA oligodeoxynucleotides (CpG ODNs) in Tg2576 AD model transgenic mice. This treatment produced a 66% and 80% reduction in the cortical and vascular amyloid burden, when compared with non-treated AD mice. Also, vaccinated Tg2576 mice performed similarly to non-treated mice on a radial arm maze used in the study, showing improvements in behavior and reduced amyloid burden.

"Our results indicate that stimulation of the innate immune system through TLR9 with CpG ODNs is an effective and apparently non-toxic method to reduce the amyloid burden in the brain," said Thomas Wisniewski, MD, professor of neurology, pathology and psychiatry at NYU Langone Medical Center. "Furthermore we found that amyloid reduction was associated with significant cognitive benefits in an AD mouse model. This approach has significant implications for future human immunomodulatory approaches to prevent AD in humans."

The deposition of amyloid β (Aβ) in the central nervous system in the form of amyloid plaques is a hallmark of Alzheimer's disease. Aβ accumulation destroys neurons in the brain, leading to deficits in cognitive abilities. Immunomodulation or vaccination for AD is emerging as an effective means of shifting the equilibrium from Aβ accumulation to clearance; however, excessive cell mediated inflammation and cerebral microhemorrhages - two forms of toxicity- were shown to occur in previous vaccination studies targeting the adaptive immune system.

"This innate immune approach did not have any of the problems previously reported with immunomodulation targeting the adaptive immune system, such as encephalitis, hemorrhages or lack of an effect on vascular amyloid, suggesting that this method has significant advantages," said Dr. Wisniewski "The treatment with CpG ODNs has already been tested in normal human volunteers and found to be safe- in studies where CpG ODNs was to be used to treat chronic infections; hence this AD treatment has the potential to be brought to clinical trial relatively quickly."

With injection of CpG ODNs used as a treatment to stimulate the innate immune system in Tg2576 AD model mice, the animals were closely monitored for signs of toxicity during behavioral testing and later for any signs of pathology through dissection. No toxicity was evident in the CpG ODN treated group. During behavioral testing in a maze the mice differed significantly between Tg2576 AD group and the CgP ODN treated group that better navigated the maze. The mice were dissected at 17 months of age after behavioral testing and the brains were processed for analysis. CpG ODN treated mice had fewer plaques compared to Tg2576 AD mice.

In addition to the analysis of Aβ burden, researchers evaluated the treatment effect of CpG ODNs on microglial (cells that act as the first form of active immune defense in the central nervous system) in Tg2576 AD mice. CpG ODNs treatment resulted in overall cortical and hippocampal brain reduction in immunoreactivity at 17 months.

"In evaluating the efficiency of CpG ODN treatment in the AD mice model, we found that simulation of TLR9 signaling led to a remarkable reduction of amyloid burden which was paralleled by a reduction in the numbers of activated defensive immune responses in the central nervous system (CNS)," said Dr. Wisniewski. "Thus the effect of CpG ODNs on immune cells may induce heightened levels of surveillance and activity by these cells and thus increased influx into the brain and clearance of Aβ. Activation of immune cells may elicit entrance of other cells into the CNS and induce either Aβ clearance or induce CNS cell signaling leading to recruitment of cells capable of clearing Aβ."

Researchers noted that the findings show administration of CpG ODNs clearly was beneficial, leading to reductions in both amyloid deposition and cognitive decline. This shows that modulation of the immune system may be beneficial for human AD patients but the methods used must be modified to prevent toxicity.
-end-
About NYU Langone Medical Center

Located in the heart of New York City, NYU Langone Medical Center is a premier center for health care, biomedical research, and medical education. For over 167 years, NYU physicians and researchers have contributed to the practice and science of medicine. Today the Medical Center consists of NYU School of Medicine; Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind; NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such nationally recognized programs as the NYU Cancer Institute, the NYU Child Study Center, and the NYU Cardiac and Vascular Institute.

Link to Full Study: http://www.jneurosci.org/cgi/content/full/29/6/1846?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wisniewski&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT

NYU Langone Medical Center / New York University School of Medicine

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.