Internal choices are weaker than those dictated by the outside world

February 11, 2009

The underlying sense of being in control of our own actions is challenged by new research from UCL (University College London) which demonstrates that the choices we make internally are weak and easily overridden compared to when we are told which choice to make.

The research, which is published today in Cerebral Cortex, is one of the first neuroscientific studies to look at changing one's mind in situations where the initial decision was one's own 'free choice'. Free choices can be defined as actions occurring when external cues are largely absent - for example, deciding which dish to choose from a restaurant menu.

The researchers asked study participants to choose which of two buttons they would press in response to a subsequent signal, while their brain activity was recorded using EEG (electroencephalogram). Some choices were made freely by the volunteers and other choices were instructed by arrows on a screen in front of them. The volunteers' choices were occasionally interrupted by a symbol asking them to change their mind, after they had made their choice, but before they had actually pressed the button.

First author Stephen Fleming, UCL Institute of Neurology, said: "When people had chosen for themselves which action to make, we found that the brain activity involved in changing one's mind, or reprogramming these 'free' choices was weak, relative to reprogramming of choices that were dictated by an external stimulus. This suggests that the brain is very flexible when changing a free choice - rather like a spinning coin, a small nudge can push it one way or the other very easily.

"The implication is that, despite our feelings of being in control, our own internal choices are flexible compared to those driven by external stimuli, such as a braking in response to a traffic light. This flexibility might be important - in a dynamic world, we need to be able to change our plans when necessary."

Professor Patrick Haggard, UCL Institute of Cognitive Neuroscience, added: "Our study has two implications for our understanding of human volition. First, our brains contain a mechanism to go back and change our mind about our choices, after a choice is made but before the action itself. Our internal decisions are not set in stone, but can be re-evaluated right up to the last moment. Second, changing an internal choice in this way seems to be easier than changing a choice guided by external instructions.

"We often think about our own internal decisions as having the strength of conviction, but our results suggest that the brain is smart enough to make us flexible about what we want. The ability to flexibly adjust our decisions about what we do in the current situation is a major component of intelligence, and has a clear survival value."
-end-
This research was funded by the Economic and Social Research Council (ESRC), with additional support from the Wellcome Trust. Stephen Fleming was funded by a Medical Research Council (MRC) doctoral studentship.

Notes for Editors

1.) For further information, or to arrange an interview with the researchers quoted, please contact Ruth Metcalfe in the UCL Media Relations Office on tel: +44 (0)20 7679 9739, mobile: +44 (0)7990 675 947, out of hours: +44 (0)7917 271 364, e-mail: r.metcalfe@ucl.ac.uk

2.) The paper 'When the Brain Changes its Mind: Flexibility of Action Selection in Instructed and Free Choices' is published online ahead of print in Cerebral Cortex, doi:10.1093/cercor/bhn252. For advance copies please contact UCL Media Relations. Please acknowledge Cerebral Cortex as a source in any articles.

3.) This study was carried out by researchers from UCL, University Medical Center Utrecht and Stuivenberg Hospital.

About UCL

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the seventh-ranked university in the 2008 THES-QS World University Rankings, and the third-ranked UK university in the 2008 league table of the top 500 world universities produced by the Shanghai Jiao Tong University. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 12,000 undergraduate and 8,000 postgraduate students. Its annual income is over £600 million.

University College London

Related Brain Activity Articles from Brightsurf:

Inhibiting epileptic activity in the brain
A new study shows that a protein -- called DUSP4 -- was increased in healthy brain tissue directly adjacent to epileptic tissue.

What is your attitude towards a humanoid robot? Your brain activity can tell us!
Researchers at IIT-Istituto Italiano di Tecnologia in Italy found that people's bias towards robots, that is, attributing them intentionality or considering them as 'mindless things', can be correlated with distinct brain activity patterns.

Using personal frequency to control brain activity
Individual frequency can be used to specifically influence certain areas of the brain and thus the abilities processed in them - solely by electrical stimulation on the scalp, without any surgical intervention.

Rats' brain activity reveals their alcohol preference
The brain's response to alcohol varies based on individual preferences, according to new research in rats published in eNeuro.

Studies of brain activity aren't as useful as scientists thought
Hundreds of published studies over the last decade have claimed it's possible to predict an individual's patterns of thoughts and feelings by scanning their brain in an MRI machine as they perform some mental tasks.

A child's brain activity reveals their memory ability
A child's unique brain activity reveals how good their memories are, according to research recently published in JNeurosci.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.

Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.

Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.

Read More: Brain Activity News and Brain Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.