Researchers discover metabolite linked to aggressive prostate cancer

February 11, 2009

ANN ARBOR, Mich. -- Researchers from the University of Michigan Comprehensive Cancer Center have identified a panel of small molecules, or metabolites, that appear to indicate aggressive prostate cancer.

The finding could lead to a simple test that would help doctors determine which prostate cancers are slow-growing and which require immediate, aggressive treatment.

Results of the study appear in the Feb. 12 issue of Nature.

"One of the biggest challenges we face in prostate cancer is determining if the cancer is aggressive. We end up overtreating our patients because physicians don't know which tumors will be slow-growing. With this research, we have identified a potential marker for the aggressive tumors," says senior study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Endowed Professor of Pathology at the U-M Medical School.

The researchers looked at 1,126 metabolites across 262 samples of tissue, blood or urine associated with benign prostate tissue, early stage prostate cancer and advanced, or metastatic, prostate cancer. They mapped the alterations in metabolites and identified about 10 that were present more often in prostate cancer than in the benign cells and were present most often in the advanced cancer samples.

"When we're looking at metabolites, we're looking several steps beyond genes and proteins. It allows us to look very deeply at some of the functions of the cells and the biochemistry that occurs during cancer development," says Chinnaiyan, a Howard Hughes Medical Institute investigator.

One metabolite in particular, sarcosine, appeared to be one of the strongest indicators of advanced disease. Levels of sarcosine, an amino acid, were elevated in 79 percent of the metastatic prostate cancer samples and in 42 percent of the early stage cancer samples. Sarcosine was not found at all in the cancer-free samples.

In the study, sarcosine was a better indicator of advancing disease than the traditional prostate specific antigen, or PSA, test that is currently used to monitor or screen for prostate cancer. Sarcosine was detected in the urine, which has researchers hopeful that a simple urine test could be used.

In addition, the researchers found that sarcosine is involved in the same pathways that are linked to cancer invasiveness. This suggests sarcosine as a potential target for future drug development.

"This research gets at characterizing the chemical complexity of a sample of blood. In the future, this science will drive how doctors make treatment recommendations for their patients," says study author Christopher Beecher, Ph.D., professor of pathology at the U-M Medical School.

Results are preliminary at this point and will need years of further testing and development before this technology would be available for patients.
-end-
Prostate cancer statistics: 186,320 Americans will be diagnosed with prostate cancer this year and 28,660 will die from the disease, according to the American Cancer Society

Additional authors: From the University of Michigan: Arun Sreekumar, Laila M. Poisson, Thekkelnaycke M. Rajendiran, Amjad P. Khan, Qi Cao, Jindan Yu, Bharathi Laxman, Rohit Mehra, Robert J. Lonigro, Yong Li, Mukesh K. Nyati, Aarif Ahsan, Shanker Kalyana-Sundaram, Bo Han, Xuhong Cao, Jaemun Byun, Gilbert S. Omenn, Subramaniam Pennathur, John T. Wei and Sooryanarayana Varambally. From Metabolon Inc.: Danny C. Alexander, Alvin Berger and Jeffrey R. Shuster. From Penn State University: Debashis Ghosh.

Funding: National Cancer Institute Early Detection Research Network, National Institutes of Health, an MTTC grant, the Burroughs Wellcome Foundation, and the Doris Duke Charitable Foundation

Disclosure: The University of Michigan has exclusively licensed all pending patents covering this technology to Metabolon, a company with expertise in discovering biomarkers using metabolomics. Beecher, Alexander, Shuster and Chinnaiyan own equity in Metabolon and Chinnaiyan serves on its Scientific Advisory Board. Beecher is a previous employee of Metabolon.

Reference: Nature, Vol. 457, No. 7231, pp. 910-915, Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression

Resources:

U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, www.mcancer.org
Michigan Center for Translational Pathology, www.med.umich.edu/mctp

University of Michigan Health System

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.