Enzyme cocktail converts cellulosic materials, water into hydrogen fuel

February 11, 2009

Blacksburg, Va. - Tomorrow's fuel-cell vehicles may be powered by enzymes that consume cellulose from woodchips or grass and exhale hydrogen.

Researchers at Virginia Tech, Oak Ridge National Laboratory (ORNL), and the University of Georgia have produced hydrogen gas pure enough to power a fuel cell by mixing 14 enzymes, one coenzyme, cellulosic materials from nonfood sources, and water heated to about 90 degrees (32 C).

The group announced three advances from their "one pot" process: 1) a novel combination of enzymes, 2) an increased hydrogen generation rate -- to as fast as natural hydrogen fermentation, and 3) a chemical energy output greater than the chemical energy stored in sugars - the highest hydrogen yield reported from cellulosic materials. "In addition to converting the chemical energy from the sugar, the process also converts the low-temperature thermal energy into high-quality hydrogen energy - like Prometheus stealing fire," said Percival Zhang, assistant professor of biological systems engineering in the College of Agriculture and Life Sciences at Virginia Tech.

"It is exciting because using cellulose instead of starch expands the renewable resource for producing hydrogen to include biomass," said Jonathan Mielenz, leader of the Bioconversion Science and Technology Group at ORNL.

The researchers used cellulosic materials isolated from wood chips, but crop waste or switchgrass could also be used. "If a small fraction - 2 or 3 percent - of yearly biomass production were used for sugar-to-hydrogen fuel cells for transportation, we could reach transportation fuel independence," Zhang said. (He added that the 3 percent figure is for global transportation needs. The U.S. would actually need to convert about 10 percent of biomass - which would be 1.3 billion tons of usable biomass).
The most recent research is published in the Wiley journal ChemSusChem (Chemistry and Sustainability), in the article "Spontaneous High-Yield Production of Hydrogen from Cellulosic Materials and Water Catalyzed by Enzyme Cocktails," by Virginia Tech student Xinhao Ye and post doctoral associate Yiran Wang, both in biological systems engineering; Robert C. Hopkins and Michael W. W. Adams of the Department of Biochemistry and Molecular Biology at the University of Georgia; Barbara R. Evans and Mielenz of the ORNL Chemical Sciences and Biosciences Divisions, respectively; and Zhang. (http://dx.doi.org/10.1002/cssc.200900017)

The research is supported by the Air Force Office of Scientific Research; Zhang's DuPont Young Professor Award, and the U.S. Department of Energy.

Learn more about Zhang's work at http://filebox.vt.edu/users/ypzhang/research.htm and about the ORNL work at http://www.ornl.gov/sci/bst/.

Virginia Tech

Related Biomass Articles from Brightsurf:

Bound for the EU, American-made biomass checks the right boxes
A first-of-its-kind study published in the journal Scientific Reports finds that wood produced in the southeastern United States for the EU's renewable energy needs has a net positive effect on US forests--but that future industry expansion could warrant more research.

The highest heat-resistant plastic ever is developed from biomass
The use of biomass-derived plastics is one of the prime concerns to establish a sustainable society, which is incorporated as one of the Sustainable Development Goals.

Laser technology measures biomass in world's largest trees
Laser technology has been used to measure the volume and biomass of giant Californian redwood trees for the first time, records a new study by UCL researchers.

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.

Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.

Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.

Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.

Read More: Biomass News and Biomass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.