The genetic secrets to jumping the species barrier

February 11, 2010

Scientists have pinpointed specific mutations that allow a common plant virus to infect new species, according to research published in the March issue of the Journal of General Virology. Understanding the genetics of the key interactions between viruses and hosts could provide insight to how some viruses manage to jump the species barrier and even give us a better idea of how animal diseases are generated.

Researchers from Saga University, Japan studied the genetic changes that took place when turnip mosaic virus (TuMV) - a plant mosaic disease spread by aphids - adapted to infect a new species. Genetic analysis showed TuMV had acquired an average of 140 significant mutations, on its evolutionary pathway from Brassica rapa (turnip), a host to which it is well adapted, to a new host Raphanus sativus (radish).

Interestingly, many of the mutations were found clustered in genes that code for two key viral proteins, P3 and CI. These two proteins are already known to interact with genes that help plants resist TuMV infection. Researchers think that a kind of molecular tug of war between these proteins and plant resistance mechanisms takes place, that determines not only the severity of disease following infection, but also whether the virus can infect its host in the first place.

Both plant and animal viruses are specifically adapted to infect and replicate in particular types of host. To ensure their spread and survival, viruses can adapt to their environment by mutating. Mutations may alter the severity of infection in existing hosts, change how contagious a virus is, or allow the virus to infect new hosts. Viruses such as TuMV that use RNA (rather than DNA) as their genetic material mutate especially easily as they use a copying method that is far more error-prone.

Professor Kazusato Ohshima who led the study believes that research into the virus-host interface in plants could have far-reaching benefits. "Revealing the subtleties of the interaction between viruses and plant resistance mechanisms could help breeders produce better crops, for example by selecting strains that block changes to TuMV." He also said the work could help the study of animal viruses. "We are trying to understand how novel viruses emerge - particularly how viruses are able to cross the species barrier. This in turn gives us a better idea of how pandemics are generated and how best to stem their spread."
-end-


Microbiology Society

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.