Nav: Home

Memory ensembles

February 11, 2016

Memory, i.e. our ability to record, to preserve and to recall our past experiences, makes up one of the most fundamental and fascinating abilities of our brain. For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day. Today, a team from the Faculty of Medicine of the University of Geneva (UNIGE) demonstrates how the brain regulates the size of the neuronal ensembles that reflect the memory trace to optimize performance. By targeting neurons in the hippocampus, the scientists show that it is possible to inhibit - or on the contrary to resurface - a memory. These results can be read in Neuron.

The trace that a memory leaves in our brain is made up of a set of cells located in the hippocampus, called engram. During the encoding of memories, the neurons that form the engram create a network. For a memory to be fixed, the correct number of neurons must be activated. If too many cells are mobilized, the storage of information may become compromised. To understand how memory works, the Geneva researchers investigated the mechanisms that control the recruitment of neurons into the engram. Initiated by Dominique Muller, who tragically passed away last April, this study was conducted by Pablo Mendez and Christian Lüscher from the Department of Basic Neurosciences at UNIGE Faculty of Medicine.

To weaken or strengthen a memory

To study the long-term stability of memory, the scientists presented mice with a particular situation, in order to create a memory. They then exposed these rodents several times to that same situation. By using optogenetics - a technique combining optics and genetics that makes neurons sensitive to light- they stimulated particular neurons. They were thus able to observe that the cells recruited to the engram activate inhibitory cells, which prevent the activation of neighboring neurons. By identifying this inhibition mechanism, the team deciphered how the mobilized neurons control the size of the cell engram and, therefore, the stability of contextual memory.

Pablo Mendez, last author of the study, explains the rest of the experiment: «Since we wanted to know to what extent the size of the cell engram influences memory, we used optogenetics to «force» mice to recruit more or less neurons. Subsequently, we found that the more the engram is significant, the better the memory is preserved, but only up to a limited point. Beyond a certain size, memory no longer works. We were thus able to reinforce a memory, but also to remove it.»

«Now that we know the basic mechanism, we want to decipher how memory itself functions. Which cells for which memories? How do neurons really encode memory? We still have many discoveries to make in order to understand in detail how our brain preserves our memories,» explains Christian Lüscher.
-end-


Université de Genève

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".