Nav: Home

Scientists advance new technology to protect drinking water from Lake Erie algal toxins

February 11, 2019

Before the 2014 Toledo Water Crisis left half a million residents without safe drinking water for three days, Dr. Jason Huntley's research at The University of Toledo focused on bacteria that cause pneumonia.

After the harmful algal bloom prompted the city of Toledo's "Do Not Drink" advisory, the microbiologist expanded his research projects to target microcystin.

"I live here, and I have a young son," said Huntley, associate professor in the UT Department of Medical Microbiology and Immunology in the College of Medicine and Life Sciences. "I don't want toxins in the water, and I am committed to helping the water treatment plant protect the public."

Huntley's research lab recently made major progress in his mission to create a biofilter that uses naturally occurring Lake Erie bacteria to remove microcystin released by harmful algal blooms from drinking water, reducing or eliminating the use of chlorine and other chemicals.

"We've identified groups of bacteria in Lake Erie that can be used to naturally purify water. To our knowledge, these bacteria have not been previously used to fight harmful algal blooms in other parts of the world," Huntley said.

The microbiologists successfully isolated bacteria from Lake Erie that degrade the microcystin toxin known as MC-LR - the most toxic, most common and most closely linked to liver cancer and other diseases - at a daily rate of up to 19 parts per billion (ppb).

Water analysts and toxicologists measure microcystin and other contaminants using the metric of ppb; one ppb is one part in 1 billion. These ppb numbers are important for human health because the U.S. Environmental Protection Agency recommends that young children not drink water containing more than 0.3 ppb of microcystin and adults not drink water containing more than 1.6 ppb of microcystin.

"The bacteria we've identified can degrade much more toxin than was reported in the 2014 water crisis," Huntley said. "Based on recorded toxin levels in Lake Erie in recent years, these rates would be able to effectively remove microcystin from water supplies."

None of the 13 microcystin-degrading bacterial isolates has been associated with human disease, so their use in future water-purifying biofilters is unlikely to be a public health concern. The identified bacteria include Flectobacillus major, Pseudomonas lutea, Agrobacterium albertimagni, Leadbetterella byssophila, Pseudomonas putida, Flectobacillus major, Pseudomonas hunanensis, Runella slithyformis, Porphyrobacter sp., Pseudomonas parafulva, Sphingobium yanoikuyae, Pseudomonas fluorescens and Sphingobium yanoikuyae.

The research is published in the February issue of the Journal of Great Lakes Research.

Researchers in Australia, China and other countries also have identified bacteria that can chew up and break down microcystin from algal blooms, however, Huntley said those specific types of bacteria were not found in any of his Lake Erie studies.

Thirteen water samples used for the study were collected from visible algal blooms in the summers of 2014 and 2015 in the western basin of Lake Erie. The scientists added MC-LR to each water sample every three-to-four days for approximately four weeks, alongside a control group that did not receive additional MC-LR.

The lab used multiple approaches to confirm the microcystin degradation results, including mass spectrometry and the ELISA test, which is the standard method water treatment plant operators use to measure microcystin concentration during algal bloom season.

His lab is now in the process of identifying the enzymatic pathways the bacteria use to break down microcystin.

Currently, municipal water treatment plants remove or degrade microcystin using methods such as chlorination, ozonation, activated carbon adsorption and flocculation.

"Those techniques are not ideal because of high costs, limited removal efficiencies, and they lead to the production of harmful byproducts or hazardous waste," Huntley said. "Biofilters are a cost-effective and safe alternative to the use of chemicals and other conventional water treatment practices."

"We're very excited about the research and the findings," said Andrew McClure, administrator for the city of Toledo's Collins Park Water Treatment Plant. "We've had preliminary talks with Dr. Huntley about ways we can implement it as a treatment technique in our plant's process."

Huntley's team is developing and testing biofilters - water filters containing the specialized bacteria that degrade microcystin toxins from lake water as it flows through the filter. Huntley holds a provisional patent on this technology.

The research was supported by grants from the Ohio Department of Higher Education through the state's Harmful Algal Bloom Research Initiative, which consists of 54 science teams at universities across the state seeking solutions to address toxic algae in Lake Erie.
-end-
"This is another great example of how Ohio Department of Higher Education-funded research is producing solutions that directly benefit Ohio EPA and those water treatment plant operators responsible for managing our drinking water," said Dr. Chris Winslow, director of Ohio Sea Grant and Stone Laboratory at The Ohio State University.

University of Toledo

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".