Nav: Home

New device simplifies measurement of fluoride contamination in water

February 11, 2019

Adding fluoride to water has been common practice in a number of countries, including the US, Australia, Brazil, Malaysia, India and Vietnam. In low concentrations (below 1.5 mg/L) can help prevent tooth decay and even strengthen bones, but going above that can have the opposite effect, causing serious dental and bone disease, especially in children and developing fetuses.

To keep things in check, the WHO has set 1.5 mg/L as the maximum limit for fluoride in drinking water. "To determine whether drinking water is safe we need to detect fluoride in water at the level of parts-per-million (ppm)," says Kyriakos Stylianou at the Laboratory of molecular simulation at EPFL Valais Wallis. "Around 1-1.5 ppm is good for teeth, but in many countries the water sources have concentrations above 2 ppm can cause serious health issues."

But measuring fluoride at such low concentrations with sufficient accuracy is expensive and requires a well-equipped chemical lab. Because of this, fluoride contamination in water affects a number of developing countries today, and even parts of developed countries.

Led by Stylianou, a team of scientists have now built a device that can accurately measure fluoride concentrations using only a few drops of water - even with low-level contamination - resulting in a simple change in color brightness. Published in the Journal of the American Chemical Society (JACS), the device is named SION-105, is portable, considerably cheaper than current methods, and can be used on-site by virtually anyone.

The key to the device is the design of a novel material that the scientists synthesized (and after which the device is named). The material belongs to the family of "metal-organic frameworks" (MOFs), compounds made up of a metal ion (or a cluster of metal ions) connected to organic ligands, thus forming one-, two-, or three-dimensional structures. Because of their structural versatility, MOFs can be used in an ever-growing list of applications, e.g. separating petrochemicals, detoxing water, and getting hydrogen or even gold out of it.

SION-105 is luminescent by default, but darkens when it encounters fluoride ions. "Add a few droplets of water and by monitoring the color change of the MOF one can say whether it is safe to drink the water or not," explains Mish Ebrahim, the paper's first author. "This can now be done on-site, without any chemical expertise."

The researchers used the device to determine the fluoride content in different groundwater samples from Vietnam, the United Arab Emirates, and Saudi Arabia. The data corresponded very well when compared to measurements made using ion chromatography, a standard method for measuring fluoride concentration in water.

"This comparison showcases the performance and reliability of SION-105, which, coupled with the portability and ease-of-use of the device, make it a very user-friendly solution for water sampling in remote areas where frequent fluoride concentration monitoring is paramount," says Stylianou.
-end-
Having confirmed the successful function of SION-105 and the device, EPFL has now filed a patent application for it. The device was developed by scientist at the Laboratory of molecular simulation, the Laboratory of Organometallic and Medicinal Chemistry, and the Electronic Workshop at EPFL Valais Wallis.

Other contributors

University of Cyprus

Reference

Fatmah Mish Ebrahim, Tu N. Nguyen, Serhii Shyshkanov, Andrzej G?adysiak, Patrick Favre, AnnAa Zacharia, Grigorios Itskos, Paul J. Dyson, Kyriakos C. Stylianou. a selective, fast-response and regenerable metal-organic frame-work for sampling excess fluoride levels in drinking water. Journal of the American Chemical Society 11 February 2019. DOI: 10.1021/jacs.8b11907

Ecole Polytechnique Fédérale de Lausanne

Related Drinking Water Articles:

Solar power with a free side of drinking water
An integrated system seamlessly harnesses sunlight to cogenerate electricity and fresh water.
'Liquid forensics' could lead to safer drinking water
Ping! The popular 1990 film, The Hunt for Red October, helped introduce sonar technology on submarines to pop culture.
Progress in hunt for unknown compounds in drinking water
When we drink a glass of water, we ingest an unknown amount of by-products that are formed in the treatment process.
Arsenic in drinking water may change heart structure
Among young adults, drinking water contaminated with arsenic may lead to structural changes in the heart that raise their risk of heart disease.
Not drinking water associated with consuming more calories from sugary drinks
This study examined how drinking water was associated with the amount of calories children, adolescents and young adults consume from sugar-sweetened beverages, including sodas, fruit drinks and sports drinks.
Not drinking water may boost kids' consumption of sugary beverages
Kids and young adults who drink no water throughout the day may consume twice the amount of calories from sugary drinks than those who drink water, according to Penn State researchers.
Drinking water sucked from the dusty desert air
An inexpensive hydrogel-based material efficiently captures moisture even from low-humidity air and then releases it on demand.
Drinking more water reduces bladder infections in women
Drinking an additional 1.5 liters of water daily can reduce recurring bladder infections in premenopausal women by nearly half, a yearlong study of otherwise healthy women with a history of repeated infections has found.
Viruses discern, destroy E. coli in drinking water
To rapidly detect the presence of E. coli in drinking water, Cornell University food scientists now can employ a bacteriophage -- a genetically engineered virus -- in a test used in hard-to-reach areas around the world.
Chemicals that keep drinking water flowing may also cause fouling
Many city drinking water systems add softening agents to keep plumbing free of pipe-clogging mineral buildup.
More Drinking Water News and Drinking Water Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.