Nav: Home

Do you like Earth's solid surface and life-inclined climate? Thank your lucky (massive) star

February 11, 2019

ANN ARBOR--Earth's solid surface and moderate climate may be due, in part, to a massive star in the birth environment of the Sun, according to new computer simulations of planet formation.

Without the star's radioactive elements injected into the early solar system, our home planet could be a hostile ocean world covered in global ice sheets.

"The results of our simulations suggest that there are two qualitatively different types of planetary systems," said Tim Lichtenberg of the National Centre of Competence in Research PlanetS in Switzerland. "There are those similar to our solar system, whose planets have little water, and those in which primarily ocean worlds are created because no massive star was around when their host system formed."

Lichtenberg and colleagues, including University of Michigan astronomer Michael Meyer, were initially intrigued by the role the potential presence of a massive star played on the formation of a planet.

Meyer said the simulations help solve some questions, while raising others.

"It is great to know that radioactive elements can help make a wet system drier and to have an explanation as to why planets within the same system would share similar properties," Meyer said.

"But radioactive heating may not be enough. How can we explain our Earth, which is very dry, indeed, compared to planets formed in our models? Perhaps having Jupiter where it is was also important in keeping most icy bodies out of the inner solar system."

Researchers say while water covers more than two-thirds of the surface of Earth, in astronomical terms, the inner terrestrial planets of our solar system are very dry--fortunately, because too much of a good thing can do more harm than good.

All planets have a core, mantle (inside layer) and crust. If the water content of a rocky planet is significantly greater than on Earth, the mantle is covered by a deep, global ocean and an impenetrable layer of ice on the ocean floor. This prevents geochemical processes, such as the carbon cycle on Earth, that stabilize the climate and create surface conditions conducive to life as we know it.

The researchers developed computer models to simulate the formation of planets from their building blocks, the so-called planetesimals--rocky-icy bodies of probably dozens of kilometers in size. During the birth of a planetary system, the planetesimals form in a disk of dust and gas around the young star and grow into planetary embryos.

Radioactive heat engine

As these planetesimals are heated from the inside, part of the initial water ice content evaporates and escapes to space before it can be delivered to the planet itself.

This internal heating may have happened shortly after the birth of our solar system 4.6 billion years ago, as primeval traces in meteorites suggest, and may still be ongoing in numerous places.

Right when the proto-Sun formed, a supernova occurred in the cosmic neighborhood. Radioactive elements, including aluminium-26, were fused in this dying massive star and got injected into our young solar system, either from its excessive stellar winds or via the supernova ejecta after the explosion.

The researchers say the quantitative predictions from this work will help near-future space telescopes, dedicated to the hunt for extrasolar planets, to track potential traces and differences in planetary compositions, and refine the predicted implications of the Al-26 dehydration mechanism.

They are eagerly awaiting the launch of upcoming space missions with which Earth-sized exoplanets outside our solar system will be observable. These will bring humanity ever-closer to understanding whether our home planet is one of a kind, or if there are "an infinity of worlds of the same kind as our own."

Their study appears in Nature Astronomy. Other researchers include those from the Swiss Federal Institute of Technology, University of Bayreuth and University of Bern.
-end-
Study: A water budget dichotomy of rocky protoplanets from 26Al-heating (will be live when embargo lifts)

Michael Meyer

Adapted from the original story published by PlanetS.

University of Michigan

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

National Geographic Little Kids First Big Book of Space (National Geographic Little Kids First Big Books)
by Catherine D. Hughes (Author), David A. Aguilar (Illustrator)

Hello, World! Solar System
by Jill McDonald (Author)

There's No Place Like Space: All About Our Solar System (Cat in the Hat's Learning Library)
by Tish Rabe (Author), Aristides Ruiz (Illustrator)

The Planets: The Definitive Visual Guide to Our Solar System
by Robert Dinwiddie (Author), Heather Couper (Author), John Farndon (Author), Nigel Henbest (Author), David Hughes (Author), Giles Sparrow (Author), Carole Stott (Author), Colin Stuart (Author)

Space Encyclopedia: A Tour of Our Solar System and Beyond (National Geographic Kids)
by David A. Aguilar (Author), David A. Aguilar (Illustrator)

Solar System Reference Poster
by Kappa Map (Author)

Solar System: A Visual Exploration of All the Planets, Moons and Other Heavenly Bodies that Orbit Our Sun
by Marcus Chown (Author)

Solar System Scratch and Sketch: An Activity Book For Inquisitive Artists and Astronauts of All Ages
by Heather Zschock (Author)

Our Solar System (Science for Toddlers)
by American Museum of Natural History (Author), Connie Roop (Author), Peter Roop (Author)

Space Activity Book for Kids Ages 4-8: A Fun Kid Workbook Game For Learning, Solar System Coloring, Dot to Dot, Mazes, Word Search and More!
by Activity Slayer (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".