Nav: Home

Spinal cord is 'smarter' than previously thought

February 11, 2019

We often think of our brains as being at the centre of complex motor function and control, but how 'smart' is your spinal cord?

Turns out it is smarter than we think.

It is well known that the circuits in this part of our nervous system, which travel down the length of our spine, control seemingly simple things like the pain reflex in humans, and some motor control functions in animals.

Now, new research from Western University has shown that the spinal cord is also able to process and control more complex functions, like the positioning of your hand in external space.

"This research has shown that a least one important function is being done at the level of the spinal cord and it opens up a whole new area of investigation to say, 'what else is done at the spinal level and what else have we potentially missed in this domain?'" said the study's senior and supervising researcher Andrew Pruszynski, PhD, assistant professor at Western's Schulich School of Medicine & Dentistry and Canada Research Chair in Sensorimotor Neuroscience.

The study, "Spinal stretch reflexes support efficient hand control," will be published online in the high impact journal Nature Neuroscience. (LINK to follow)

This kind of hand control requires sensory inputs from multiple joints - mainly the elbow and the wrist - and these inputs was previously thought to be processed and converted into motor commands by the brain's cerebral cortex.

Using specialized robotic technology, a three degree of freedom exoskeleton at Western's Brain and Mind Institute, subjects were asked to maintain their hand in a target position and then the robot bumped it away from the target by simultaneously flexing or extending the wrist and elbow. The researchers measured the time that it took for the muscles in the elbow and wrist to respond to the bump from the robot and whether these responses helped bring the hand back to the initial target.

By measuring the latency, or 'lag', in the response, they were able to determine whether the processing was happening in the brain or the spinal cord.

"We found that these responses happen so quickly that the only place that they could be generated from is the spinal circuits themselves," said the study's lead researcher Jeff Weiler, PhD, a post-doctoral fellow at Schulich Medicine & Dentistry. "What we see is that these spinal circuits don't really care about what's happening at the individual joints, they care about where the hand is in the external world and generate a response that tries to put the hand back to where it came from."

This response generated by the spinal cord is called a 'stretch reflex,' and has previously been thought to be very limited in terms of how it helps movement. "Historically it was believed that these spinal reflexes just act to restore the length of the muscle to whatever happened before the stretch occurred," said Pruszynski. "We are showing they can actually do something much more complicated - control the hand in space."

This finding adds immensely to our understanding of neuroscience and neurocircuitry, and provides new information and targets for rehabilitation science.

"A fundamental understanding of the neurocircuits is critical for making any kind of progress on rehabilitation front," said Pruszynski who is also a scientist at Western's Robarts Research Institute and the Brain and Mind Institute. "Here we can see how this knowledge could lead to different kinds of training regimens that focus on the spinal circuitry."
-end-
MEDIA CONTACT: Crystal Mackay, Media Relations Officer, Schulich School of Medicine & Dentistry, Western University, t. 519.661.2111 ext. 80387, c. 519.933.5944, crystal.mackay@schulich.uwo.ca @CrystalMackay

ABOUT WESTERN

Western University delivers an academic experience second to none. Since 1878, The Western Experience has combined academic excellence with life-long opportunities for intellectual, social and cultural growth in order to better serve our communities. Our research excellence expands knowledge and drives discovery with real-world application. Western attracts individuals with a broad worldview, seeking to study, influence and lead in the international community.

ABOUT THE SCHULICH SCHOOL OF MEDICINE & DENTISTRY

The Schulich School of Medicine & Dentistry at Western University is one of Canada's preeminent medical and dental schools. Established in 1881, it was one of the founding schools of Western University and is known for being the birthplace of family medicine in Canada. For more than 130 years, the School has demonstrated a commitment to academic excellence and a passion for scientific discovery.

University of Western Ontario

Related Spinal Cord Articles:

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.
An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.
Spinal cord is 'smarter' than previously thought
New research from Western University has shown that the spinal cord is able to process and control complex functions, like the positioning of your hand in external space.
The lamprey regenerates its spinal cord not just once -- but twice
Marine Biological Laboratory (MBL) scientists report that lampreys can regenerate the spinal cord and recover function after the spinal cord has been severed not just once, but twice in the same location.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
New approach could jumpstart breathing after spinal cord injury
A research team at the Krembil Research Institute in Toronto has developed an innovative strategy that could help to restore breathing following traumatic spinal cord injury.
Dr. Jekyll, Mr. Hyde: Study reveals healing mesenchymal cells morph and destroy muscles in models of spinal cord injury, ALS and spinal muscular atrophy
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP), in collaboration with the Fondazione Santa Lucia IRCCS in Rome, have discovered a new disease-specific role in FAP cells in the development of muscle tissue wasting, indicating a potential new avenue for treating motor neuron diseases including spinal cord injury, ALS and spinal muscular atrophy.
More Spinal Cord News and Spinal Cord Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.