Nav: Home

Research characterizes evolution of pathway for reproductive fitness in flowering plants

February 11, 2019

ST. LOUIS, MO, February 11, 2019 - Small RNAs (sRNAs) are key regulators involved in plant growth and development. Two groups of sRNAs are abundant during development of pollen in the anthers - a critical process for reproductive success. One of these pathways for sRNA production, previously believed present in grasses and related monocots, has now been demonstrated to be present widely in the flowering plants, evolved over 200 million years ago, and is arguably one of the evolutionary innovations that made them so successful.

The research, led by Blake Meyers, Ph.D., member, Donald Danforth Plant Science Center and professor, Division of Plant Sciences, University of Missouri and his collaborators at South China Agriculture University, the University of Delaware, and the University of Maryland, published their findings, "24-nt reproductive phasiRNAs are broadly present in angiosperms," in the journal Nature Communications.

"We've been studying this pathway extensively in maize as part of a project supported by the National Science Foundation. Quite unexpectedly, we found the pathway in the tropical tree that produces lychee fruit, which, as a eudicot, is distant from the grasses. When we analyzed other eudicot plant genomes, we found that this pathway was present in many of them - a complete surprise to us, since we thought it was only in the monocots," said Meyers. "There are some key differences between the pathway in eudicots and in grasses, and characterizing these in our study has given us insights into how sRNA and reproductive biology has diverged in these groups of plants."

Meyers explained that the long-standing view was that this pathway was specific to the grasses. In a companion piece of work, Meyers and his colleagues have demonstrated that maize, a monocot and member of the grass family, requires this pathway for full male fertility. But their paper in Nature Communications upends this view, demonstrating that the pathway emerged prior to the split between eudicots and monocots. One of the big mysteries they are trying to address is the precise molecular function of these sRNAs in pollen development. To address this question in eudicots, Meyers and his team are using Fragaria vesca, a diploid, also known as woodland strawberries as a model for their experiments. The genome of Fragaria vesca was sequenced in 2010 and is often used as a model due to its small genome size, short reproductive cycle and ease of propagation.

"The explosion of flowering plants was a remarkable thing in evolution, and they represent most species used for food and fuel," said Meyers. "Understanding the genetic mechanisms by which flowers develop will be important for improving crop yields and breeding better varieties, particularly for making the high-yielding hybrid crops that support modern agriculture."
-end-
Collaborators include: Rui Xia, Chengjie Chen, Wuqiang Ma and Jing Xu, South China Agricultural University, Guangzhou, Guangdong, China; Kun Huang and Parth Patel, University of Delaware, Newark, Delaware; Fuxi Wang and Zhongchi Liu, University of Maryland, College Park, Maryland; and Suresh Pokhrel, Donald Danforth Plant Science Center.

About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. Follow us on Twitter at @DanforthCenter.

Donald Danforth Plant Science Center

Related Maize Articles:

Biologists untangle growth and defense in maize, define key antibiotic pathways
Studying the complex layers of immunity in maize, a staple for diets around the world, scientists have identified key genes that enable surprisingly diverse antibiotic cocktails that can be produced as defensive blends against numerous disease agents.
Gene variant in maize ancestor could increase yields in today's densely planted fields
From within the genetic diversity of wild teosinte -- the evolutionary ancestor of modern maize -- valuable traits lay hidden.
Maize-centric diet may have contributed to ancient Maya collapse
Researchers look at the role of diet in the ability of the ancient Maya to withstand periods of severe climatic stress.
Crop yield in maize influenced by unexpected gene 'moonlighting'
Researchers identified a relationship between crop yield in the maize plant and activity of the RAMOSA3 gene.
Ancient Japanese pottery includes an estimated 500 maize weevils
Researchers have discovered an ancient Japanese pottery vessel from the late Jomon period (4500-3300 BP) with an estimated 500 maize weevils incorporated into its design.
More Maize News and Maize Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...