Nav: Home

UMN researchers 3D bio-print a model that could lead to improved anticancer drugs and treatments

February 11, 2019

MINNEAPOLIS, MN- February 11, 2019 - University of Minnesota researchers have developed a way to study cancer cells which could lead to new and improved treatment. They have developed a new way to study these cells in a 3D in vitro model (i.e. in a culture dish rather than in a human or animal).

In a paper recently published in Advanced Materials, Angela Panoskaltsis-Mortari, PhD, Vice Chair for Research and Professor in the Department of Pediatrics at the University of Minnesota Medical School, Director of the 3D Bioprinting Facility and Member of the Masonic Cancer Center, and her fellow researchers found that cells behave differently in this 3D soft tissue environment than on 2D plastic or glass surfaces, for example.

"This model is more consistent with what the body is like," said Panoskaltsis-Mortari, "and, therefore, studying the effects of drugs with human cells at this level makes the results more meaningful and predictive of what will happen in the body."

The 3D vascularized tumor tissues provide a platform to identify potential therapies and screen anticancer drugs. Importantly, this new model also provides a means to study metastatic cells--cancer cells that have entered a blood vessel and traveled to another site.

"One of the reasons this model is successful is that we are better able to control the environment," said Fanben Meng, Post-Doctoral Associate in the College of Science and Engineering at the University of Minnesota. "We are able to slowly cause the release of the chemical mediators and create a chemical gradient. It gives the cells time to behave in a way that's similar to what we think happens in the body."

"All of this is enabled by our custom-built 3D printing technology, which allows us to precisely place clusters of cells and chemical depots in a 3D environment," said Michael C. McAlpine, Ph.D., Benjamin Mayhugh Associate Professor of Mechanical Engineering in the College of Science and Engineering at the University of Minnesota and co-corresponding author on the paper.

Initially, the researchers have focused on lung cancer and melanoma. The next step is to incorporate more cell types, especially immune system cells, as well as cell therapies, and study those interactions.

"Testing anti-cancer drugs and cell therapies are both concepts that the University of Minnesota is world renowned for, and, with this model, we continue to be on the forefront of those innovations," said Masonic Cancer Center member Daniel Vallera, Ph.D., Professor of Therapeutic Radiology-Radiation Oncology in the Department of Radiation Oncology at the University of Minnesota Medical School. "Something like this can yield some very important answers between the relationship of vasculature and drugs because this is modular; you can add elements to it and make it more sophisticated. You can even use the patients' own tumor cells in this model."
-end-
This work was made possible through an R21 grant awarded by the NIBIB (#1R21EB022830 "3D Bioprinting for Esophageal Reconstruction"), the NIH's New Innovator Award (#1DP2EB020537 "3D Printed Nano-Bionic Organs"), a seed grant from the UMN Institute for Engineering in Medicine, the UMN Prostate & Urologic Cancer Translational Working Group pilot project award, the UMN 3D Bioprinting Facility, and a collaboration between the College of Science and Engineering and the Medical School at the University of Minnesota.

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

About the Masonic Cancer Center

The Masonic Cancer Center, University of Minnesota is the Twin Cities' own Comprehensive Cancer Center, designated 'Outstanding' by the National Cancer Institute. For more than 25 years, researchers, educators, and care providers have worked to discover the causes, prevention, detection and treatment of cancer and cancer-related diseases. Learn more at cancer.umn.edu.

University of Minnesota Medical School

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".