Nav: Home

Changes in lung cells seen almost immediately after contact with low-molecular weight PAHs

February 11, 2019

It is well known that exposure to high-molecular weight polycyclic aromatic hydrocarbons (PAHs) increases cancer risk, leading to regulation of compounds like benzo(a)pyrene (BAP). However, less is known about the health effects of low molecular weight PAHs. Now, a University of Colorado Cancer Center study shows cancer-promoting changes in lung cells as soon as 30 minutes after exposure to low-molecular weight PAHs, adding further evidence that regulators may be underestimating the risk of these compounds commonly found in secondhand cigarette and marijuana smoke, as well as other environmental and occupational exposures.

"Our overall goal is to understand what types of adverse effects these low-molecular weight PAHs are eliciting in the lung," says Alison Bauer, PhD, investigator at the CU Cancer Center and associate professor in the Department of Environmental and Occupational Health at the Colorado School of Public Health.

Her group was the first to show previously that these low-molecular weight PAHs lead to changes like gap junction dysregulation, p38 MAPK activation, and inflammatory mediator production in lung cells.

"And all of these events are thought to be involved in early stage cancer development," Bauer says.

The current study looks at how these cancer-promoting changes occur and involved a collaborative team from the Colorado School of Public Health, UC Denver School of Pharmacy, and a collaborator at Michigan State University.

"We wanted to understand short-term responses to PAHs - the acute response - what are the early mechanistic events that may be leading to events later on," Bauer says.

To explore these early effects, Bauer and colleagues including postdoctoral researcher and paper first author Kate Siegrist, PhD, exposed lung cells to a mixture of low-molecular weight PAHs including 1-methylanthracene (1-MeA) and fluoranthene (Flthn), abundant compounds in secondhand smoke and shown in previous studies to produce cancer-supporting changes. Then the researchers blocked specific pathways in these cells to discover what functions are necessary for the PAH mixture's adverse effects.

What they saw was the early activation of lipid signaling. Simply put, these low-molecular weight PAHs were turning on lipid signaling that at least, in part, initiated cellular changes that are associated with early events in cancer development, such as inhibition of gap junctions and activation of MAP kinases.

"What we're seeing is that early on, 30 minutes to 8 hours after exposure, lipid signaling pathways are getting activated. Based on global metabolomics done with Dr. Nichole Reisdorph in the CU School of Pharmacy Metabolomics Core, we hypothesize that these PAHs are interacting early with the cell membranes to activate these changes," Bauer says.

Interestingly, the field of PAH research has long believed that PAHs must be metabolized before causing adverse events. In other words, PAH "parent compounds" are first metabolized into active PAH metabolites, and it is these transformed metabolites that are the drivers of cellular changes. However, Bauer's group measured PAH metabolism to specifically show that their mixture of low-molecular weight PAHs did not need to be metabolized in order to observe cellular changes - it was the parent compounds themselves producing these adverse effects.

"The PAH field has always said that PAHs have to be metabolized to have adverse effects, but we're seeing effects before metabolism," Bauer says.

The group now plans to move their experiments forward from lung cells to slices of lung tissue, hoping to show the effects of low-molecular weight PAHs in models that are closer to the human lung.

"The World Health Organization classifies these compounds as Group III which is unclassifiable, but we're not fully clear on what these low-molecular weight PAHs do in the lung," Bauer says. "Our evidence shows these compounds should be investigated further for their possible adverse effects."

University of Colorado Anschutz Medical Campus

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".