Nav: Home

Scientists discover oldest evidence of mobility on Earth

February 11, 2019

Ancient fossils of the first ever organisms to exhibit movement have been discovered by an international team of scientists.

Discovered in rocks in Gabon and dating back approximately 2.1 billion years, the fossils suggest the existence of a cluster of single cells that came together to form a slug-like multicellular organism that moved through the mud in search of a more favourable environment.

The team, which included experts from Cardiff University, state that the new discovery places the first ever evidence of mobility on Earth to more than 1.5 billion years earlier than previously thought, and raises new questions regarding the history of life.

Previous discoveries dated the earliest traces of locomotion in complex organisms in much younger rocks dated at around 570 million years ago from various localities.

In a new study, published today in Proceedings of the National Academy of Sciences, the team report finding similar trace movements for complex organisms that thrived 2.1 billion years ago in the Francevillian inland Sea.

A detailed 3D analysis using a non-destructive X-ray imagining technique, alongside geometrical and chemical dating, revealed that the new fossils belong to an organism that likely spent most of its time in oxygenated waters, and was therefore oxygen-dependent.

The fossils arepreserved as tubular structures running through the rock in thin layers with a consistent diameter of a few millimetres.

Located next to these tubular structures were fossilised microbial biofilms which, the researchers believe, acted as grazing grounds for the multicellular organisms.

Co-author of the study Dr Ernest Chi Fru, from Cardiff University's School of Earth and Ocean Sciences, said: "It is plausible that the organisms behind this phenomenon moved in search of nutrients and oxygen that were produced by bacteria mats on the seafloor-water interface.

"The results raise a number of fascinating questions about the history of life on Earth, and how and when organisms began to move. Was this a primitive biological innovation, a prelude to more perfected forms of locomotion seen around us today, or was this simply an experiment that was cut short?"
-end-
Notes to editors

1. For further information contact:
Michael Bishop
Communications & Marketing
Cardiff University
Tel: 02920 874499 / 07713 325300
Email: BishopM1@cardiff.ac.uk

2. Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning. Cardiff's flagship Research Institutes are offering radical new approaches to pressing global problems. http://www.cardiff.ac.uk

Cardiff University

Related Organisms Articles:

New NMR technique offers 'molecular window' into living organisms
NMR Technique developed at U of T Scarborough has potential for noninvasive disease diagnosis using current MRI technology.
Evolving 'lovesick' organisms found survival in sex
Being 'lovesick' takes on a whole new meaning in a new theory which answers the unsolved fundamental question: why do we have sex?
Micro-organisms will help African farmers: Soil microbes to the rescue
Sorghum is the fifth most important cereal in the world.
Decreasing antibiotic use can reduce transmission of multidrug-resistant organisms
Reducing antibiotic use in intensive care units by even small amounts can significantly decrease transmission of dangerous multidrug-resistant organisms, according to new research published online today in Infection Control & Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America.
Miniature organisms in the sand play big role in our ocean
In the Journal of Experimental Marine Biology and Ecology, Jeroen Ingels, a researcher at the FSU Coastal and Marine Laboratory, explains that small organisms called meiofauna that live in the sediment provide essential services to human life such as food production and nutrient cycling.
Tiny organisms with a massive impact
Although diatoms are incredibly small, they have a significant impact on the dispersal of nutrients and trace elements in global marine waters.
A new path to fixing genes in living organisms
A gene-editing method shows promise for using targeted gene-replacement therapy in living organisms.
Mechanism of successful horizontal gene transfer between divergent organisms explained
University of Tsukuba-led researchers showed how a host's gene regulatory environment can facilitate the establishment of a gene newly arrived via horizontal transfer.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
The oceans are full of barriers for small organisms
Subtle and short-lived differences in ocean salinity or temperature function as physical barriers for phytoplankton, and result in a patchy distribution of the oceans' most important food resource.

Related Organisms Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...