Nav: Home

Machine learning algorithm helps in the search for new drugs

February 11, 2019

Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.

The researchers, led by the University of Cambridge, used their algorithm to identify four new molecules that activate a protein which is thought to be relevant for symptoms of Alzheimer's disease and schizophrenia. The results are reported in the journal PNAS.

A key problem in drug discovery is predicting whether a molecule will activate a particular physiological process. It's possible to build a statistical model by searching for chemical patterns shared among molecules known to activate that process, but the data to build these models is limited because experiments are costly and it is unclear which chemical patterns are statistically significant.

"Machine learning has made significant progress in areas such as computer vision where data is abundant," said Dr Alpha Lee from Cambridge's Cavendish Laboratory, and the study's lead author. "The next frontier is scientific applications such as drug discovery, where the amount of data is relatively limited but we do have physical insights about the problem, and the question becomes how to marry data with fundamental chemistry and physics."

The algorithm developed by Lee and his colleagues, in collaboration with biopharmaceutical company Pfizer, uses mathematics to separate pharmacologically relevant chemical patterns from irrelevant ones.

Importantly, the algorithm looks at both molecules known to be active and molecules known to be inactive, and learns to recognise which parts of the molecules are important for drug action and which parts are not. A mathematical principle known as random matrix theory gives predictions about the statistical properties of a random and noisy dataset, which is then compared against the statistics of chemical features of active/inactive molecules to distil which chemical patterns are truly important for binding as opposed to arising simply by chance.

This methodology allows the researchers to fish out important chemical patterns not only from molecules that are active, but also from molecules that are inactive - in other words, failed experiments can now be exploited with this technique.

The researchers built a model starting with 222 active molecules, and were able to computationally screen an additional six million molecules. From this, the researchers purchased and screened the 100 most relevant molecules. From these, they identified four new molecules that activate the CHRM1 receptor, a protein that may be relevant for Alzheimer's disease and schizophrenia.

"The ability to fish out four active molecules from six million is like finding a needle in a haystack," said Lee. "A head-to-head comparison shows that our algorithm is twice as efficient as the industry standard."

Making complex organic molecules is a significant challenge in chemistry, and potential drugs abound in the space of yet-unmakeable molecules. The Cambridge researchers are currently developing algorithms that predict ways to synthesise complex organic molecules, as well as extending the machine learning methodology to materials discovery.

The research was supported by the Winton Programme for the Physics of Sustainability.
-end-


University of Cambridge

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.