Nav: Home

X-ray laser study identifies crystalline intermediate in our 'pathway to breathing'

February 11, 2019

For the first time, scientists from ASU's School of Molecular Sciences in collaboration with colleagues from Albert Einstein College of Medicine in New York City have captured snapshots of crystal structures of intermediates in the biochemical pathway that enables us to breathe.

Published today in the Proceedings of the National Academy of Sciences - Snapshot of an Oxygen Intermediate in the Catalytic Reaction of Cytochrome c Oxidase - their results provide key insights into the final step of aerobic respiration.

"It takes a team to conduct such a sophisticated experiment," explains SMS's associate professor Alexandra Ros who, together with her graduate student Austin Echelmeier and former intern Gerrit Brehm, developed the hydrodynamic focusing mixer making these experiments possible.

The mixer is a microfluidic device, which is high-resolution, 3D-printed and enables two streams of oxygen saturated buffer to mix perfectly with a central stream containing bovine cytochrome c oxidase (bCcO) microcrystals. This initiates a catalytic reaction between the oxygen and the microcrystals.

In the beginning

This research was instigated by a conversation between SMS's professor Petra Fromme, director of the Biodesign Institute's Center for Applied Structural Discovery (CASD), Raimund Fromme, SMS associate research professor, and professor Denis Rousseau from the Albert Einstein College of Medicine in New York City who works on the structure of cytochrome c oxidase, a key enzyme involved with aerobic respiration.

Cytochrome c oxidase (CcO) is the last enzyme in the respiratory electron transport chain of cells located in the mitochondrial membrane. It receives an electron from each of four cytochrome c molecules, and transfers them to one oxygen molecule (two atoms), converting the molecular oxygen to two molecules of water.

Researchers at CASD including ASU's Richard Snell professor of physics, John Spence, helped to pioneer a new technique called time resolved serial femtosecond (millionth of a billionth of a second) crystallography (TR-SFX). This technique takes advantage of an X-ray Free Electron Laser (XFEL) at the Department of Energy's (DOE) SLAC National Accelerator Laboratory, Stanford.

SFX is a promising technique for protein structure determination, where a liquid stream containing protein crystals is intersected with a high-intensity XFEL beam that is a billion times brighter than traditional synchrotron X-ray sources.

While the crystals diffract and immediately after are destroyed by the intense XFEL beam, the resulting diffraction patterns can be recorded with state-of-the-art detectors. Powerful new data analysis methods have been developed, allowing a team to analyze these diffraction patterns and obtain electron density maps and detailed structural information of proteins.

The method is specifically appealing for hard-to-crystallize proteins, such as membrane proteins, as it yields high-resolution structural information from small micro- or nanocrystals, thus reducing the contribution of crystal defects and avoiding tedious (if not impossible) growth of large crystals as is required in traditional synchrotron-based crystallography.

This new "diffraction before destruction" method has opened up new avenues for structural determination of fragile biomolecules under physiologically relevant conditions (at room temperature and in the absence of cryoprotectants) and without radiation damage.

CcO reduces oxygen to water and harnesses the chemical energy to drive proton (positively charged hydrogen atom) relocation across the inner mitochondrial membrane by a previously unresolved mechanism.

In summary, the TR-SFX studies have allowed the structural determination of a key oxygen intermediate of bCcO. The results of the team's experiments provide new insights into the mechanism of proton relocation in the cow enzyme as compared to that in bacterial CcOs, and paves the way for the determination of the structures of other CcO intermediates, as well as transient species formed in other enzyme reactions.
-end-
Other coauthors on this paper, not previously mentioned, include Izumi Ishigami, Ariel Lewis-Ballester and Syun-Ru Yeh, all from the Albert Einstein College of Medicine, Nadia Zatsepin and Stella Lisova (both ASU physics), Jesse Coe, Zachary Dobson, Garrett Nelson and Shangji Zhang all from SMS and CASD. Thomas Grant from University at Buffalo, State University of New York, as well as Sébastien Boutet, Raymond Sierra and Alexander Batyuk all from SLAC.

Arizona State University

Related Enzyme Articles:

Enzyme catalyzed decomposition of 4-hydroxycyclophosphamide
Oxazaphosphorine cytostatics (Cyclophosphamide, Ifosfamide) are often used and very effective anticancer agents; but so far little is known about the molecular basis for the antitumor effect.
The carpenter enzyme gives DNA the snip
Enzyme follows a two-step verification system before cutting and repairing DNA damage.
Cellular senescence prevented by the SETD8 enzyme
An enzyme that blocks cellular senescence and its mechanisms has been discovered by a Japanese research team.
Enzyme key to learning in fruit flies
University of California, Riverside-led research finds enzyme that is key to learning in fruit flies.
Old enzyme, new role
A team of researchers at the University of Delaware has discovered a new function for an enzyme that has long been known to have a central role in bacterial metabolism.
Enzyme research provides a new picture of depression
Depression is the predominant mental disease and constitutes the most common cause of morbidity in developed countries.
Mysteries of enzyme mechanism revealed
International team led by University of Leicester unveil a hidden step in enzyme mechanism.
Single enzyme controls 2 plant hormones
Scientists at Washington University in St. Louis have isolated the first enzyme shown to be capable of controlling the levels of two distinct plant hormones, involved both in normal growth and in responses to infections.
New enzyme-mapping advance could help drug development
Scientists at MIT and the University of São Paulo in Brazil have identified the structure of an enzyme that could be a good target for drugs combatting three diseases common in the developing world.
Severity of enzyme deficiency central to favism
The congenital disease favism causes sickness and even jaundice in patients after they consume beans.

Related Enzyme Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".