Nav: Home

Geneticists ID molecular pathway for autism-related disorder

February 11, 2019

DALLAS - Feb. 11, 2019 - Geneticists discovered a molecular trigger for a severe autism-related disorder that has enabled them to start testing a potential therapy targeting a specific protein in the brain.

A UT Southwestern study involving humans and mice details one of the few instances in which researchers have found a precise pathway that causes a neurodevelopmental disorder - in this case a rare condition called Kaufman oculocerebrofacial syndrome (KOS).

The research gives scientists a better understanding of potential treatments for KOS, which is characterized by intellectual disability and lack of speech. It also demonstrates the benefits of using modern genetic sequencing to dissect the vast and complicated network of mutations that underlie autism spectrum disorder.

"Researchers have already identified broad molecular pathways for different forms of autism spectrum disorder," said Dr. Maria Chahrour, a neurogeneticist who led the study published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS). "What we are working on now is defining specific pathways like this one that are actionable and can be targeted for therapies."

Scientists have known that the absence of the UBE3B gene leads to KOS but were not aware of what happened inside the brain that caused the symptoms. The new PNAS study found that KOS may occur when a protein known as BCKDK accumulates in the brain in the absence of UBE3B, which would normally regulate the BCKDK protein. Mutations in the BCKDK gene can also lead to autism spectrum disorder.

Dr. Chahrour's lab found that mice lacking UBE3B and had BCKDK protein buildup could no longer vocalize and showed other symptoms of the disease, including stunted growth and abnormal brain development. Both the patients and mice showed characteristic blood abnormalities - a promising development that may eventually lead to a blood test to diagnose the condition.

Meanwhile, Dr. Chahrour's team has begun testing a therapy intended to inhibit the buildup of BCKDK in mice to see if their brain function and vocalization are restored. She cautions that more research is needed to determine if UBE3B regulates other pathways that contribute to KOS, but she considers the finding a notable step to understanding the disease.

More broadly, she said, the study shows how genetic sequencing can help scientists find mutations and then test their impact on the brain, which is critical to deciphering the biological processes that go awry in these conditions and could lead to developing effective therapies.

"Neurodevelopmental disorders, including autism, remain a huge area of unmet need," Dr. Chahrour said. "Although next-generation sequencing has changed our field by allowing us to find mutations, there is still a huge gap in our mechanistic understanding of these diseases that would allow us to translate preclinical findings into successful clinical trials."

Dr. Chahrour is leading multiple projects to sequence the genomes of patients with autism spectrum disorder and other neurodevelopmental disorders to find disease-causing mutations and study the pathways involved with each. Eventually, she hopes, these disorders can be more accurately and more rapidly diagnosed not by observable symptoms alone but by a genetic test.

"Imagine if we could find the precise cause for each of these neurodevelopmental disorders," she said. "We could then start placing them in pathways and finding therapies that target the root of the condition. That's what I'm working toward."
Dr. Chahrour is an Assistant Professor of Neuroscience and Psychiatry with the Eugene McDermott Center for Human Growth and Development and the Peter O'Donnell Jr. Brain Institute. Another UT Southwestern researcher involved in the study is Dr. Prashant Mishra from the Children's Medical Center Research Institute.

The study was supported by the National Institute of Mental Health and the Brain and Behavior Research Foundation.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 15 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

UT Southwestern Medical Center

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".