Nav: Home

Beyond romance

February 11, 2019

Love can make us do crazy things. It often prompts us to behave in counterintuitive ways, like, for example, placing the wellbeing of our loved ones above our own.

But why?

Such altruism has perplexed and intrigued scientists for centuries. A new study out of UC Santa Barbara explores how an individual's genetics and brain activity correlate with altruistic behaviors directed toward romantic partners. The team found that pathways related to bonding in other animals showed up in humans, and may be involved in altruism more generally. The results appear in the journal Behavioral Neuroscience.

Scientists currently think that altruism evolved in social species as a strategy for ensuring the survival of relatives. The idea is that genes that promote altruism will persist, perhaps not through an individual's children but through those of their kin, who carry similar genetics. In this way, providing for your relatives ensures some of your own genes are passed down.

For humans, with our complex social systems, this basic premise takes on new dimensions. "It would make sense that people would be particularly invested in the wellbeing of their partners because they want to live long, happy, healthy lives together," said Bianca Acevedo, a research scientist at UC Santa Barbara's Neuroscience Research Institute, and the paper's lead author. "And in the case of newlyweds, some of them will want to have children. So being selfless towards their partner is an investment in their offspring."

Altruism is an important aspect of pair bonding, but according to Acevedo, it hasn't been examined much -- especially when compared to the bond between parents and their children, where altruism is critical. "Responding to a child in a selfless way is such an important piece of care-giving," said Acevedo.

Phenomena as nuanced as love and altruism involve a lot of chemistry. Oxytocin is a neurotransmitter that has taken hold in popular consciousness as the "cuddle hormone." And while it's involved in a variety of processes, it's role in trust, empathy and bonding is well established. Less well known is the hormone vasopressin, which scientists have also connected with pair bond behaviors.

Acevedo's team recruited newlywed couples to investigate how a person's genetics and brain activity correlate with the empathy they show toward their romantic partner. The team tested each participant for two genetic variants, one involved in oxytocin sensitivity and another connected to vasopressin sensitivity. The researchers then had them respond to a standardized questionnaire asking about their feelings toward their partner and other individuals. This gave them a measurement of each person's general levels of empathy and altruism toward their partner.

Then the participants entered a functional magnetic resonance imaging (fMRI) machine. Though similar to the standard MRI machines doctors use to image soft tissue, fMRIs can track changes associated with blood flow. This allows researchers to see how different parts of the brain activate in response to different types of stimuli. In this case, participants were shown pictures of their romantic partners, friends and strangers with different facial expressions. The researchers explained what the person in the picture was feeling and why, in order to elicit an emotional response.

When participants felt a strong sense of empathy with the person in the picture, regions of the brain associated with emotion and emotional memory lit up. "It's almost like the brain is responding in a way that signals, 'this is important, pay attention,'" said Acevedo.

These areas of the brain -- like the amygdala and ventral pallidum -- have a particularly dense concentration of receptors for oxytocin and vasopressin, further implicating these neurotransmitters in empathy and altruism. What's more, individuals with genetic variations that made them more sensitive to these hormones exhibited stronger emotional responses across the board.

The researchers also found that brain regions that activated specifically in response to a partner's face were the same regions that are critical in other animals during studies of pair bonding and attachment. This suggests that our brains have pathways devoted specifically to attachment-related behaviors, pathways which may be quite old. However, some of these attachment pathways showed activity even when participants saw strangers' faces, providing evidence of the intricate notions of empathy and altruism at play in humans.

Acevedo is continuing to investigate empathy, altruism and care-giving in different types of couples. She's currently exploring how mind-body activities like yoga influence how individuals respond to partners struggling with memory problems.

"It's important that we're thinking about these systems and these behaviors beyond romance," said Acevedo. "When people think about relationships, they tend to think of romantic love as being really important. But we've forgotten some of the other basic and important reasons that people are together, like to take care of each other.

"Beyond romantic love, we live long lives together. Many of us raise children together, or take care of each other into old age," continued Acevedo. "And altruism is deeply rooted in our evolutionary, neural and genetic framework."
-end-


University of California - Santa Barbara

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".