Atom or noise? New method helps cryo-EM researchers tell the difference

February 11, 2020

Cryogenic electron microscopy, or cryo-EM, has reached the point where researchers could in principle image individual atoms in a 3D reconstruction of a molecule - but just because they could see those details doesn't always mean they do. Now, researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have proposed a new way to quantify how accurate such reconstructions are and, in the process, how confident they can be in their molecular interpretations.

Cryo-EM works by freezing biological molecules which can contain thousands of atoms so they can be imaged under an electron microscope. By aligning and combining many two-dimensional images, researchers can compute three-dimensional maps of an entire molecule, and this technique has been used to study everything from battery failure to the way viruses invade cells. However, an issue that has been hard to solve is how to accurately assess the true level of detail or resolution at every point in such maps and in turn determine what atomic features are truly visible or not.

Wah Chiu, a professor at SLAC and Stanford, Grigore Pintilie, a computational scientist in Chiu's group, and colleagues devised the new measures, known as Q-scores, to address that issue. To compute Q-scores, scientists start by building and adjusting an atomic model until it best matches the corresponding cryo-EM derived 3D map. Then, they compare the map to an idealized version in which each atom is well-resolved, revealing to what degree the map truly resolves the atoms in the atomic model.

The researchers validated their approach on large molecules, including a protein called apoferritin that they studied in the Stanford-SLAC Cryo-EM Facilities. Kaiming Zhang, another research scientist in Chiu's group, produced 3D maps close to the highest resolution reached to date - up to 1.75 angstrom, less than a fifth of a nanometer. Using such maps, they showed how Q-scores varied in predictable ways based on overall resolution and on which parts of a molecular they were studying. Pintilie and Chiu say they hope Q-scores will help biologists and others using cryo-EM better understand and interpret the 3D maps and resulting atomic models.
-end-
The study was performed in collaboration with researchers from Stanford's Department of Bioengineering. Molecular graphics and analysis were performed using the University of California, San Francisco's Chimera software package. The project was funded by the National Institutes of Health.

Citation: Grigore Pintilie et al., Nature Methods, February 10, 2020 (DOI: 10.1038/s41592-020-0731-1)

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

DOE/SLAC National Accelerator Laboratory

Related Atoms Articles from Brightsurf:

How to gently caress atoms
It is extremely difficult to study oxygen molecules on the metal oxide surface without altering them.

'Hot and messy' entanglement of 15 trillion atoms
In a study published in Nature Communications, ICFO, HDU and UPV researchers report the production of a giant entangled state that may help medical researchers detect extremely faint magnetic signals from the brain.

Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.

Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.

Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.

2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.

Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.

Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.

Read More: Atoms News and Atoms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.